Понедельник, 30 декабря

Углеводы в – Углеводы — Википедия

Углеводы — Википедия

Углево́ды — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Сахара́  — другое название низкомолекулярных углеводов: моносахаридов, дисахаридов и олигосахаридов.

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных[1].

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы — дисахариды, от двух до десяти единиц — олигосахариды, а более десяти — полисахариды. Моносахариды быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.

Моносахариды[править | править код]

Распространённый в природе моносахарид — бета-D-глюкоза.

Моносахари́ды (от др.-греч. μόνος ‘единственный’, лат. saccharum ‘сахар’ и суффикса -ид) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральный pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]. Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (C6H12O6) — структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов[2].

Дисахариды[править | править код]

Дисахари́ды (от др.-греч. δία ‘два’, лат. saccharum ‘сахар’ и суффикса -ид) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных[3].

Олигосахариды[править | править код]

О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2—10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее[3]. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях[3].

Полисахариды[править | править код]

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков[4].

Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения[2].

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6H10O5)p, а при полном гидролизе — глюкоза[4].

Структура гликогена

Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу[2].

Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].

Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид»[2].

Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].

Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие)[2].

Слева D-глицеральдегид, справа L-глицеральдегид.

Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Стереоизомерия моносахаридов: изомер глицеральдегида, у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны, принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкоза, фруктоза, манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда[5].

В живых организмах углеводы выполняют следующие функции:

  1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так, целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[1].
  2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
  3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК)[6].
  4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6].
  5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[1].
  6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/л глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
  7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

Cx(h3O)y+xO2→xCO2+yh3O, ΔH<0.001{\displaystyle {\mathsf {C_{x}(H_{2}O)_{y}+xO_{2}\rightarrow xCO_{2}+yH_{2}O,\ \Delta H<0.001}}}

В зелёных листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

xCO2+yh3O→Cx(h3O)y+xO2{\displaystyle {\mathsf {xCO_{2}+yH_{2}O\rightarrow C_{x}(H_{2}O)_{y}+xO_{2}}}}

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов[4]:

  1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
  2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
  3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
  4. Взаимопревращение гексоз.
  5. Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
  6. Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов[править | править код]

  1. 1 2 3 4 Н. А. Абакумова, Н. Н. Быкова. 9. Углеводы // Органическая химия и основы биохимии. Часть 1. — Тамбов: ГОУ ВПО ТГТУ, 2010. — ISBN 978-5-8265-0922-7.
  2. 1 2 3 4 5 6 7 8 9 10 11 Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 1-е изд. — М.: Медицина, 1985. — С. 349—400. — 480 с. — (Учебная литература для студентов медицинских институтов). — 75 000 экз.
  3. 1 2 3 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 234—235. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8.
  4. 1 2

ru.wikipedia.org

Что нужно знать об углеводах, чтобы быть здоровым

Что такое углеводы

Это один из трёх типов макронутриентов, то есть веществ, которые питают тело. Остальные два — жиры и белки.

Углеводы делятся на классы:

  • Сахара — отдельные молекулы сахаров или короткие цепочки из таких молекул. Это глюкоза, фруктоза, галактоза, сахароза.
  • Крахмалы — длинные цепи углеводных молекул, которые разбиваются на мелкие составляющие в пищеварительном тракте.
  • Клетчатка — углеводы, которые не перевариваются.

Главная функция углеводов — давать телу энергию. Большинство из них распадается в пищеварительном тракте до глюкозы, а она уже служит топливом. Каждый грамм углеводов даёт 4 ккал. Исключение — клетчатка, которая куда менее калорийна.

Что запомнить: углеводы — это питательные вещества, дающие энергию.

Почему не все углеводы одинаково полезны

Разобраться в том, сколько нужно углеводов, непросто, потому что они разные. Чаще всего углеводы делят на простые и сложные. К первым относятся сахара, а ко вторым — крахмалы и клетчатка.

Но эта классификация может давать сбои, потому что продукты с высоким содержанием крахмала способны как приносить пользу, так и вредить здоровью (особенно очищенные переработанные крупы).

Кроме того, сахара по-разному действуют на тело. Тот сахар, который специально добавляют в выпечку или напитки, вреден. Но у природных сахаров из фруктов или овощей нет кошмарных для здоровья эффектов. Так что определения сложных и простых углеводов надо уточнить.

  • Сложные углеводы — углеводы из необработанной пищи, в том числе фруктов, бобов, цельного зерна.
  • Простые углеводы — сахара и крахмалы, которые очистили от клетчатки и обработали.

Что запомнить: сложные углеводы находятся в необработанной пище. Простые углеводы с меньшей питательной ценностью — в обработанной.

В чём разница между углеводами

Сложные углеводы полезнее простых, потому что у них выше плотность питательных веществ. То есть вместе с каждой калорией они поставляют в организм антиоксиданты, клетчатку, витамины и минералы. А вот простые углеводы — это только калории и ничего больше.

Чтобы понять, в чём же всё-таки разница, сравним цельное зерно с очищенным. В цельном зерне есть три части:

  • Зародыш — часть зерна, в которой много полиненасыщенных жиров и других питательных веществ.
  • Эндосперм — внутренняя часть зерна, которая в основном состоит из крахмала.
  • Оболочка — твёрдая внешняя часть зерна, в которой много клетчатки и незаменимых жирных кислот.

В зародыше и оболочке (отрубях) — всё лучшее, полезное и питательное. Но во время обработки оболочку и зародыш удаляют, так что остаётся только крахмалистый эндосперм.

Сравните, сколько питательных веществ содержится в 120 г цельного и очищенного пшеничного зерна.

Цельное зерно Очищенное зерно
Калорийность, ккал 407 455
Углеводы, г 87 95,4
Белки, г 16,4 12,9
Жиры, г 2,2 1,2
Клетчатка, г 14,6 3,4
Тиамин, % от дневной нормы 36 10
Рибофлавин, % от дневной нормы 15 0
Ниацин, % от дневной нормы 38 8
Витамин B6, % от дневной нормы 20 8
Фолиевая кислота, % от дневной нормы 13 8
Витамин B5, % от дневной нормы 12 5
Железо, % от дневной нормы 2 8
Магний, % от дневной нормы 41 7
Фосфор, % от дневной нормы 42 13
Калий, % от дневной нормы 14 4
Цинк, % от дневной нормы 23 6
Марганец, % от дневной нормы 228 43
Селен, % от дневной нормы 121 61
Холин, мг 37,4 13

Цельное пшеничное зерно — источник важнейших веществ, которые теряются в процессе очистки и обработки.

Так же обстоят дела с фруктами и овощами. В свежих есть сахара, но есть и витамины, минералы и клетчатка. А вот в обработанных, приготовленных (особенно в полуфабрикатах) и даже выжатых овощах сахара больше, а питательных веществ меньше. Кроме того, в готовую еду и напитки сахар нередко ещё и добавляют.

Что запомнить: сложные углеводы, такие как цельное зерно, свежие фрукты и овощи, питательны. В простых углеводах больше калорий, но меньше полезных веществ.

Чем полезны сложные углеводы

Не вызывают резких скачков сахара в крови

Простые углеводы перевариваются быстро, а из-за этого сахар в крови резко повышается. Скачки уровня сахара заставляют поджелудочную железу вырабатывать большие дозы инсулина, а это уже приводит к резкому падению сахара. Когда в крови его мало, нам снова хочется есть — мы тянемся за новой порцией чего-нибудь вкусного.

Сложные углеводы, богатые клетчаткой, перевариваются медленнее. Сахара из них поступают в кровь постепенно, а значит, скачков не происходит . Поэтому сложные углеводы обеспечивают тело энергией равномерно, помогая дольше сохранять чувство сытости.

Снижают риск хронических заболеваний

Сложные углеводы при регулярном употреблении снижают риск хронических заболеваний, таких как диабет или болезни сердечно-сосудистой системы. Всё из-за клетчатки, витаминов и других веществ, о которых шла речь выше: они помогают в профилактике.

Более того, исследования показали , что употребление сложных углеводов снижает количество «плохого» холестерина в крови и повышает количество «хорошего».

Помогают пищеварению

В кишечнике живут миллиарды полезных бактерий, которые называются микробиотой. Она влияет не только на здоровье кишечника, но и на весь организм. Клетчатка из сложных углеводов — это корм для полезных бактерий. Чем лучше вы их кормите, тем лучше они работают, например производят питательные вещества вроде короткоцепочечных жирных кислот, важных для здоровья желудочно-кишечного тракта.

Уменьшают воспаление

Воспаление — естественный ответ организма на инфекцию или травму. Если процесс затягивается, то провоцирует развитие многих серьёзных заболеваний, в том числе рака и диабета.

Сложные углеводы помогают бороться с воспалением, а вот простые сахара, наоборот, поддерживают его.

Чем вредны простые углеводы

Чтобы быть здоровым, мало есть сложные углеводы. Надо ещё отказываться от простых, потому что они:

  • Провоцируют переедание. Простые углеводы быстро перевариваются и приводят к скачкам уровня сахара в крови. Это вызывает постоянное чувство голода.
  • Повышают риск инфарктов и инсультов. Исследования показали , что у людей, которые часто едят простые углеводы, чаще развиваются заболевания сердца и сосудов.
  • Повышают риск развития диабета второго типа. Частое употребление простых углеводов может сделать клетки устойчивыми к действию инсулина. Это причина развития сахарного диабета второго типа.
  • Приводят к сахарной зависимости. Сахар стимулирует мозг вырабатывать дофамин. Люди, которые склонны к зависимостям, могут подсесть на сладкое.
  • Повышают вес. Простые углеводы влияют на уровень гормонов, отвечающих за аппетит, причём так, что увеличивается риск ожирения.

Что есть, а что не стоит

В рационе должны быть углеводы, но только хорошие: сложные, свежие, необработанные.

Где найти сложные углеводы:

  • Цельное зерно: овёс, гречка, ячмень.
  • Бобовые: горох, фасоль, бобы и чечевица (неконсервированные).
  • Овощи и фрукты: любые, лучше свежие или минимально обработанные.
  • Орехи и семена: фундук, миндаль, семечки подсолнечника, кунжут.

Где прячутся простые углеводы:

  • Сладкие напитки: соки, газировки, коктейли, сладкий чай и кофе.
  • Десерты и конфеты.
  • Белый хлеб из пшеничной муки тонкого помола.
  • Макароны: те, которые сделаны из мягкой пшеницы.

Сложные углеводы питательнее простых. В них много клетчатки и полезных веществ. Поэтому чем чаще мы их едим, тем здоровее становимся. А вот простые углеводы, возможно, вкусные, но совершенно бесполезные и даже вредные.

Читайте также

lifehacker.ru

значение и функции углеводов в организме человека

Доступно и подробно о том, что такое углеводы, их виды, гликемический индекс, пищеварение, клетчатку, глюкозу и взаимосвязь между накоплением жира в организме и физической активностью.

Углеводы – это ключевой источник энергии в человеческом теле, всего на 1 их грамм приходится 4 калории энергии. При расщеплении углеводов в организме образуется глюкоза, она чрезвычайно важна для сохранения тканевого белка, жирового обмена и питание ЦНС.

Основное, для чего нужны углеводы в организме человека — это снабжение тела энергией для поддержания всех его функций и полноценной жизнедеятельности.

Различают следующие виды углеводов — простые и сложные; для того чтобы более глубоко разобраться в этом вопросе необходимо взглянуть на него с научной точки зрения.

Типы углеводов

Рассмотрим какие бывают углеводы, на какие группы делятся и как их классифицируют.

Простые:

Моносахариды: к которым относятся Глюкоза (известная также как декстроза), Фруктоза (также известная как левулёза, или фруктовый сахар) и Галактоза.

Дисахариды: к которым относятся Сахароза, Лактоза и Мальтоза.

Простые углеводы или сахара могут вызывать резкое повышение уровня сахара в крови, тем самым стимулируя избыточную выработку инсулина, что в свою очередь провоцирует резкое снижение сахара в крови. Глюкоза и мальтоза являются обладателями самых высоких гликемических индексов (см. далее).

Сложные:

Олигосахариды: (частично усваиваемые полисахариды) включают Мальтодекстрины, Фруктоолигосахариды, Рафинозу, Стахиозу и Вербаскозу. Эти частично усваиваемые полисахариды в основном содержатся в бобовых и, хотя они могут вызывать газы и вздутие живота, их считают здоровыми углеводами. Они менее сладкие чем моно- или дисахариды. Рафиноза, стахиоза и фруктоолигосахариды в небольших количествах встречаются в определенных зернобобовых, зерновых и овощах.

Полисахариды: (легко перевариваемые и неперевариваемые полисахариды). К легко перевариваемым полисахаридам относят Амилозу, Амилопектин и Полимеры глюкозы. Эти сложные углеводы должны быть основным источником углеводной энергии. Полимеры глюкозы получают из крахмала и зачастую используют в спортивных напитках и энергетических гелях для легкоатлетов.

Неперевариваемые полисахариды: эти сложные углеводы обеспечивают организм пищевыми волокнами, необходимыми для здорового функционирования желудочно-кишечного тракта и устойчивости к заболеваниям.

Прочие сложные углеводы: включают Маннитол, Сорбитол, Ксилит, Гликоген, Рибозу. Маннитол, сорбитол и ксилит (сахарные спирты) являются питательными подсластителями, не вызывающими образование кариеса, благодаря их свойствам влагоудержания и стабилизации их часто используют в продовольственных товарах; однако они медленно перевариваются и, при потреблении в больших количествах, вызывают желудочно-кишечное расстройство. Основной формой накопления углеводов в организме животных является гликоген; рибоза в свою очередь является частью генетического кода.

Переваривание и усвоение углеводов

Для того чтобы организм получил глюкозу из еды, пищеварительной системе необходимо сначала превратить крахмал и дисахариды, содержащиеся в пище, в моносахариды, которые смогут быть поглощены через клетки выстилающие тонкий кишечник. Крахмалу принадлежит самая крупная из перевариваемых молекул углеводов и именно ей требуется самое глубокое расщепление. Дисахаридам, к примеру, необходимо разделиться всего один раз, для того чтобы организм их усвоил.

Клетчатка, крахмал, моносахариды и дисахариды поступают в кишечник. (Некоторые крахмалы, прежде чем попадут в тонкий кишечник, частично расщепляются ферментами выделяемыми слюнными железами). Ферменты поджелудочной железы превращают крахмал в дисахариды. Ферменты на поверхности клеток стенки кишечника расщепляют дисахариды на моносахариды, которые попадают в капилляр откуда в последствии через воротную вену доставляются в печень. Та в свою очередь превращает галактозу и фруктозу в глюкозу.

Накопление глюкозы в виде гликогена

Метаболизм углеводов в организме происходит следующим образом. После того как мы что-то съели уровень глюкозы в крови повышается и первой на это реагирует поджелудочная железа. Она высвобождает гормон инсулин, который сигнализирует тканям организма поглощать избыточную глюкозу. Часть этой глюкозы используется клетками мышц и печени для построения полисахарида гликоген.

Мышцы запасают 2/3 от общего объема гликогена в организме и используют его для обеспечения своего собственного питания во время нагрузок. Оставшуюся 1/3 накапливает печень и более щедра в его распределении; при истощении запаса энергии она делится гликогеном в виде глюкозы в крови с мозгом и остальными органами.

Когда концентрация глюкозы в крови падает и клетки нуждаются в энергии, кровоток наводняется гормонами поджелудочной железы, глюкагонами. Тысячи ферментов в клетках печени высвобождают глюкозу в кровь для питания остальных клеток тела. У другого гормона, адреналина, схожее действие, это часть защитного механизма организма во время опасности (реакция «бей или беги»).

Хотя глюкоза может превращаться в жир, жировые отложения никогда не смогут трансформироваться обратно в глюкозу и обеспечить нормальное питание мозга. Это одна из причин почему голодание или низкоуглеводные диеты могут быть опасны.

При серьезном углеводном дефиците у организма возникает сразу две проблемы. Прежде всего, из-за недостатка глюкозы он вынужден получать ее из белков, тем самым отвлекая их от таких жизненно важной работы как поддержание иммунной защиты. Функции белков в организме настолько незаменимы, что, только ради того, чтобы избежать их использования для получения энергии уже стоит поддерживать уровень углеводов; это называют «сберегающим белок» действием углеводов.

Также, без достаточного количества углеводов, организм не может нормально распоряжаться своими жировыми запасами. (Фрагменты жиров должны соединяться с углеводами прежде чем смогут быть использованы для производства энергии). Минимальное количество углеводов необходимое для полноценной защиты белка и предотвращения кетоза для человека среднего телосложения составляет порядка 100 г/день. И лучше, если это будут легко усваиваемые углеводы в количестве в 3-4 раза превышающем этот минимум.

Роль гликогена в физической активности

Гликоген запасается вместе с водой в соотношении 1 г углеводов к 3 г воды. Во время выполнения физических упражнений он расщепляется до глюкозы, которая вместе с жиром обеспечивает мышцы энергией.

Во время кратковременной высокоинтенсивной нагрузки (анаэробной) при спринте или поднятии весов, резко возникает потребность в огромном количестве энергии. В этих случаях гликоген выступает основным топливом для организма поскольку только он может расщепляться достаточно быстро, жир расходуется в небольших количествах.

Во время более длительных низкоинтенсивных упражнений (аэробных), например, езды на велосипеде, плавания или бега на длинные дистанции, гликоген также выступает в роли главного энергоресурса, но по мере того как иссякает его запас, расходуется больше жира. Жир недостаточно быстро расщепляется для того, чтобы непрерывно удовлетворять высокие затраты энергии и поэтому способность организма выдерживать длительные нагрузки связана с его запасами гликогена. Признаком его истощения в работающих мышцах является усталость.

Высокий уровень гликогена в начале упражнения способен избавить от быстрого утомления. Таким образом, количество употребляемых в пищу углеводов определяет количество накопленного гликогена, что в свою очередь существенно влияет на нашу производительность. Когда мы съедаем что-то вроде фруктов, каш или хлеба, глюкоза быстро попадает в кровоток, готовая незамедлительно обеспечивать энергией, нуждающиеся в ней, мозг, мышцы или другие ткани организма.

Низкоуглеводная диета менее эффективна с точки зрения пополнения запасов гликогена в теле. Особенно остро его утечка заметна при отсутствии перерыва между тренировками. Это может вызывать ощущение вялости и потерю интереса к занятиям. В таком случае, необходимо взять перерыв в несколько дней, чтобы организм смог восполнить свои ресурсы.

Запасы гликогена обновляются за счет потребления большого количества углеводной пищи. Хорошим источником углеводов являются:

  • бананы;
  • хлеб;
  • крупы;
  • картофель;
  • рис;
  • макаронные изделия.

Отдавая предпочтение цельным вариантам этих продуктов, вы также увеличиваете в своем рационе количество пищевых волокон (клетчатки). После тренировки необходимо пополнять запасы гликогена, в противном случае провести на максимуме следующую тренировку будет просто невозможно. На это может потребоваться до 48 часов, а в случае соблюдения низкоуглеводной диеты еще больше. Поэтому рекомендуется чередовать тяжелые и более легкие тренировки, чтобы запасы мышечного гликогена могли правильно восстанавливаться.

Иными словами, функции углеводов в организме человека заключаются в эффективном пополнении запасов гликогена в мышцах и печени. Гликоген необходим для сокращения мышц. Если организм не получает достаточное количество углеводов или отдыха, уровень гликогена неумолимо снижается, наваливается усталость и снижается способность работать эффективно.

Трансформация глюкозы в жир

Когда мы голодны, нам свойственно переедать. После того как удовлетворены все нужды клеток, потребность в энергии и пополнены запасы гликогена, к обработке поступающих углеводов организм начинает применять другой подход: избыточною глюкозу он расщепляет с помощью печени на небольшие фрагменты, чтобы затем объединить их в более устойчивое энергохранилище известное как ЖИР (с избыточными белками и жирами происходит то же самое).

Жиры затем высвобождаются в кровоток, который доставляет их в жировые ткани, где они и остаются на хранение. В отличие от клеток печени способных хранить запас гликогена на 4-6 часов, жировые клетки могут накапливать неограниченное количество жира. Даже несмотря на то, что излишки углеводов трансформируются в жир и накапливаются в теле, сбалансированный рацион с высоким содержание сложных углеводов помогает контролировать вес и постную мышечную ткань. Углеводная пища менее способствует полноте, чем обычная жирная еда.

Гликемический индекс

Суть системы гликемических индексов (ГИ) заключается в том, что некоторые продукты повышают уровень глюкозы в крови и концентрацию инсулина сильнее других. Ученые измеряют гликемический эффект от пищи отслеживая насколько сильно и быстро вырос уровень глюкозы в крови и через какой отрезок времени организм отреагировал и вернул его на нормальный уровень.

Большинство людей способно быстро адаптироваться, но у тех, чей углеводный обмен отклоняется от нормы могут наблюдаться экстремально высокие скачки уровня глюкозы в крови. В таких случаях лучше отдавать предпочтение еде с низким ГИ, таким как:

  • коричневый рис;
  • цельнозерновой хлеб;
  • макароны из твердых сортов пшеницы;
  • сладкий картофель;
  • некоторые овощи, в особенности зеленого цвета;
  • некоторые фрукты.

ГИ является результатом сочетания множества факторов и результат далеко не всегда так уж предсказуем. Например, ГИ мороженного ниже чем у картофеля; у того же картофеля ГИ меняется в зависимости от способа приготовления – у запеченного картофеля он ниже, чем у пюре; низкий гликемический индекс у сочных сладких яблок; известно, что сухие бобовые всех видов обеспечивают стабильный уровень глюкозы в крови.

Еще немаловажно, что ГИ продуктов меняется в зависимости от того есть их отдельно или в сочетании с другой едой. Смешение продуктов в еде как правило балансирует их ГИ. Большинство людей ест разнообразную пищу и поэтому им не нужно беспокоиться о ГИ при выборе продуктов.

Таблица гликемических индексов продуктов:

Гликемический индекс фруктов Гликемический индекс макаронных изделий Гликемический индекс хлебных изделий и выпечки
Яблоко 38
Банан 55
Мускусная дыня 65
Вишня 22
Грейпфрут 25
Виноград 46
Киви 52
Манго 55
Апельсин 44
Папайя 58
Груша 38
Ананас 66
Слива 39
Арбуз 103
Спагетти 43
Равиоли (с мясом) 39
Феттучини (с яйцом) 32
Рожки 43
Капеллини 45
Лингвини 46
Макароны 47
Рисовая лапша 58
Бейгл l 72
Черничный маффин 59
Круассан 67
Пончик 76
Пита 57
Бородинский хлеб 51
Ржаной хлеб 76
Хлеб на закваске 52
Бисквит 46
Вафли 76
Белый хлеб 70
Цельнозерновой пшеничный хлеб 69
Гликемический индекс овощей Гликемический индекс снеков Гликемический индекс печенья и крекеров
Свекла 69
Брокколи 10
Капуста 10
Морковь 49
Кукуруза 55
Зеленый горошек 48
Салат-латук 10
Грибы 10
Лук 10
Пастернак 97
Картофель (запеченный) 93
Картофельное пюре (порошковое) 86
Молодой картофель 62
Картофель фри 75
Красный перец 10
Тыква 75
Сладкий картофель 54
Кешью 22
Шоколадный батончик 49
Кукурузные чипсы 72
Jelly Beans 80
Арахис 14
Попкорн 55
Картофельные чипсы  55
Крендельки 83
Сникерс 41
Грецкие орехи 15
Крекеры Грэхема 74
Хлебцы 71
Сладкие сухари 70
Овсяное печенье 55
Рисовые хлебцы 82
Ржаные хлебцы 69
Соленый крекер 74
Песочное печенье 64
Гликемический индекс бобов Гликемический индекс молочных продуктов Гликемический индекс сахаров
Печеная фасоль 48
Зеленые бобы 79
Длинная белая фасоль 31
Нут 33
Чечевица 30
Лимская фасоль 32
Турецкие бобы 38
Фасоль пинто 39
Красная фасоль 27
Соевые бобы 18
Белая фасоль 31
Молоко цельное 22
Молоко обезжиренное 32
Молоко шоколадное 34
Мороженное 61
Мороженное (нежирное) 50
Йогурт (с низким содержанием жира) 33
Фруктоза 23
Глюкоза 100
Мед 58
Лактоза 46
Мальтоза 105
Сахароза 65
Гликемический индекс зерновых Гликемический индекс сухих завтраков
Гречка 54
Булгур 48
Рис басмати 58
Коричневый рис 55
Длиннозерновой белый рис 56
Круглый белый рис 72
Вермишель быстрого приготовления 46
Мультизерновые хлопья 51
Ржаные хлопья 45
Кукурузные хлопья 84
Рисовые шарики 82
Овсянка 49
Пшеничная соломка 67
Воздушная пшеница 67

Качественные источники углеводов

Углеводы являются неотъемлемой частью любого рациона. Организм получает из них большую часть энергии и множество витаминов и питательных веществ. Еда, где содержатся углеводы в изобилии — это многие растительные продукты, такие как рис, макароны, бобы, картофель и многие другие зерновые и овощи.

При выборе зерновых продуктов настоятельно рекомендуем брать цельнозерновые варианты, такие как цельнозерновой хлеб, коричневый рис, цельнозерновая паста, киноа, овес, и булгур.

Источники сложных углеводов

В чем содержатся углеводы, которые медленно усваиваются:

  • овощи;
  • бобовые;
  • зерновые*;
  • фрукты;
  • свекла;
  • морковь;
  • кукуруза;
  • горошек;
  • картофель;
  • репа;
  • фасоль;
  • чечевица;
  • лимская фасоль;
  • фасоль пинто;
  • дробленный горох;
  • ячмень;
  • овес;
  • рис;
  • рожь;
  • пшеница;
  • съедобные семена.

*а также зерновые продукты – цельнозерновой пшеничный хлеб, крекеры или макароны.

Источники простых углеводов (Натуральные)

  • Фруктоза (фруктовый сахар)
  • Лактоза (молочный сахар)
  • Фрукты и соки такие как яблоки, апельсины, ананасы.
  • Молочные продукты, например, молоко и йогурт.

Углеводы и физическая активность

Физическая активность резко увеличивает расход энергии, и любой спортсмен, независимо от типа тренировок, должен продумывать стратегию относительно наилучшего обеспечения своих потребностей в энергии для того, чтобы достичь успеха в своей области.

Для занимающихся спортом людей крайне важно получать достаточное количество энергии для обеспечения всех потребностей тела, включая поддержание тканей в здоровом состоянии, рост и восстановление тканей и непосредственные энергетические затраты на физическую активность. Практически все опросы, проведенные среди атлетов, показали, что они потребляют недостаточно энергии для обеспечения нужд их организма.

Можно взглянуть на это так: планируя длительную автомобильную поездку в 500 км, на заправочной станции вы заливаете топливо, которого хватит только на 80 км пути — машина попросту не доедет до места назначения; так и плохо «заправленные» спортсмены тоже будут испытывать трудности и не смогут быть достаточно конкурентоспособными. Общеизвестно что спортсменам следует потреблять достаточное количество углеводов для того, чтобы перекрывать большую часть расхода энергии при физических нагрузках, и дополнительно съедать количество углеводов необходимое для восстановления запасов гликогена в перерывах между тренировками.

В идеале, они следует преимущественно питаться сложными углеводами и потреблять простые углеводы во время и сразу после тренировки. Другие источники энергии (белки и жиры) так же должны присутствовать в рационе для того, чтобы полностью обеспечить все потребности организма в питательных веществах, но основным энергоресурсом должны быть все-таки углеводы. При занятиях спортом, без четко продуманного подхода к рациону, очень сложно получить достаточное количество энергии и углеводов. Не стоит забывать, что тренировки идут рука об руку с грамотным планированием питания.

Необходимое количество углеводов в сутки

Рекомендации по суточной норме:

  1. Каждый день съедайте в сумме 5 – 9 порций овощей и фруктов.
  2. Каждый день съедайте в сумме 6 – 11 порций хлеба, зерновых, крахмалов, бобовых и других сложных углеводов.
  3. Ограничивайте потребление рафинированных сахаров – не более 10% от общего потребления калорий за день.

Рекомендации по суточному потреблению углеводов:

Физическая активность Углеводы
Малоподвижный образ жизни Минимум 55% от общего потребления калорий, при условии адекватного потребления
Спортсмены-любители Минимум 60% от общего потребления калорий, при условии адекватного потребления
Спортсмены тренирующиеся на выносливость 6-10 г на 1 кг собственного веса
Спортсмены тренирующиеся на силу 6-10 г на 1 кг собственного веса

Для того чтобы понять какое количество углеводов в граммах необходимо именно вам следует высчитать норму углеводов от суточной потребности в калориях. На этикетках некоторых продуктов можно найти уже готовый расчет количества углеводов содержащегося в одной порции продукта, в %-м выражении от суточного потребления калорий. Как правило, это значение приведено для рациона общим объемом в 2 000 ккал в день и объем углеводов в нем составляет 300 г, что равно 60%. На основе этих данных не сложно подсчитать, что при суточном потреблении в 2 500 ккал, объем углеводов составит 375 г (60%).

Теперь, имея некое понятие об их природе, время задать следующий вопрос: а сколько именно граммов углеводов необходимо съедать? Нам уже известно, что это количество должно составлять от 40% до 60% общего суточного потребления калорий, а в таблице ниже можно найти более точные значения этого показателя.

В таблице приведены значения, отображающие количество углеводов (в граммах) необходимое людям с умеренно активным образом жизни в зависимости от их массы тела и выбранного процентного отношения (40, 50 или 60%) углеводов к общему объему потребляемых за день калорий.

Масса тела (кг) Суточное потребление калорий 40% от суточного потребления калорий 50% от суточного потребления калорий 60% от суточного потребления калорий
63,5 кг 2604 ккал 260 г 326 г 396 г
68 кг 2790 ккал 279 г 348 г 419 г
72,5 кг 2976 ккал 298 г 372 г 446 г
77 кг 3162 ккал 316 г 395 г 474 г
81,5 кг 3348 ккал 335 г 418 г 502 г
86 кг 3534 ккал 353 г 442 г 530 г
91 кг 3720 ккал 372 г 465 г 558 г

Пищевые волокна (клетчатка)

Клетчатка важна для здоровья организма и хорошего самочувствия. К ее полезным для здоровья свойствам относятся:

  • обеспечение нормальной работы пищеварительного тракта
  • снижение уровня сывороточного холестерина;
  • улучшает соотношение между «хорошим» и «плохим» холестерином.

Клетчатка содержится в углеводной пище, особенно богаты ей неочищенные зерновые, фрукты и овощи. Выбирая продукты с высоким содержанием пищевых волокон, в расчёте на их пользу, разумно искать среди источников клетчатки пшеничные отруби — они преимущественно состоят из нерастворимых волокон и наиболее эффективны в смягчении стула, но, в то же время, овсяные отруби, с более растворимыми волокнами, эффективнее в вопросе снижении уровня холестерина в крови.

Клетчатка, содержащаяся в бобовых, геркулесе, яблоках и моркови, также способствуют снижению этого показателя. Для потребителей это означает, что несмотря на то, что какой-то конкретный продукт может быть невероятно богат одним из видов клетчатки, для того чтобы получить все преимущества пищевых волокон, необходимо разнообразно питаться каждый день.

Однако, как и в любом вопросе, здесь главное не переусердствовать, поскольку избыток клетчатки может причинить вред организму. Она выводит воду из организма и может спровоцировать обезвоживание. Из-за ускоренного прохождения еды через пищеварительную систему излишки пищевых волокон, могут ограничить его всасывание железа, поскольку большая его часть усваивается в начале кишечника.

Связующие вещества в некоторых пищевых волокнах ведут себя подобно хелатообразующим соединениям и образуют химические связи с минеральными веществами (железом, цинком, кальцием и т.д.), и затем выводят из тела. Некоторые пищевые волокна мешают организму использовать каротин и получать из него витамин А. Также слишком большое количество клетчатки в рационе может ограничить общий объем съедаемой пищи и привести к дефициту питательных веществ и энергии. В подобной ситуации особенно уязвимы люди с неполноценным питанием, пожилые люди и дети, не употребляющие в пищу продукты животного происхождения.

На каждые съеденные 1 000 ккал должно приходиться более 20 г клетчатки, а общее потребление пищевых волокон за день должно составлять не менее 30 грамм.

Оцените статью: Загрузка…

sportfood.info

свойства и функции углеводов, чем они важны для организма человека

Углеводы всегда были предметом спора среди худеющих. Из-за того, что потребность каждого организма в них индивидуальна, мы постарались собрать в этом руководстве всю необходимую информацию для того, чтобы вы рассчитали свою норму углеводов, а также получали ее из здоровых источников. Стараетесь ли вы при этом похудеть, тренируетесь для набора массы или хотите пробежать свой первый полумарафона.

Углеводы – это важнейший компонент клеток органов и тканей, основной источник обеспечения их энергией. Наиболее важны они для людей, занимающихся спортом. Но многие диетологи «обвиняют» их в быстром наборе веса, другие, наоборот, употребляют их в пищу для похудения. Кто же прав? Давайте подробно разберем для чего нужны углеводы в организме и какие их источники лучше выбирать.

Содержание статьи

Что такое углеводы?

Углеводы содержатся практически в любой пищи и имеет энергетическую ценность 4 кал/г. Но не все они одинаковы, и различные их виды по-разному влияют на ваше тело. Пища обычно содержит в себе комбинацию из двух типов углеводов: простых и сложных.

Углеводы – это сложные химические соединения, состоящие из углерода, кислорода и водорода. Первые открытия наукой были описыеы формулой: Cx(H2O)y, как будто атомы углерода скреплены с несколькими атомами воды (отсюда и название). Сейчас доказано, что в молекуле углеводов атомы углерода соединены по отдельности с водородом, гидроксильной (ОН) и карбоксильной (С=O) группами. Однако прежнее название прочно прижилось.

Классификация

В зависимости от количества атомов углерода, входящих в состав молекулы выделяют следующие группы:

  • Моносахариды или простые сахара. Их называют также «быстрыми» углеводами или «легкоусвояемыми».К ним относятся глюкоза, рабиноза, галактоза, фруктоза.
  • Дисахариды или сложные сахара (сахароза, мальтоза, лактоза) при расщеплении распадаются на две молекулы моносахаридов.
  • Полисахариды – крахмал, клетчатка, пектины, гликоген (животный крахмал).  Это «медленные» углеводы – они расщепляются в течение нескольких часов.

Простые

Простые углеводы часто называют просто «сахар». Они состоят из двух соединенных блоков сахара. Эти блоки могут быть глюкозой, фруктозой и галактозой. Из-за того, что цепи коротки, их легко разрушить, именно поэтому они сладки на вкус, стоит  им только коснуться вашего языка. Также они быстро перевариваются и всасываются в кровь.

Читайте подробнее о вреде и пользе сахара для здоровья.

К еде, богатой простыми углеводами, относятся подсластители (сахар, сироп, мёд), сладости, желе, джемы и рафинированная мука. Фрукты, овощи, бобы и молоко тоже содержат быстрые сахара, но также они содержат важные витамины и минералы, клетчатку и протеин, поэтому их ограничивать не стоит.

Сложные

Сложные углеводы отличаются тем, что просто содержат клетчатку, которая замедляет их усвоение. Они состоят из трёх и более сахаров, связанных цепью и, как правило, находятся в тех продуктах, которые также богаты протеином, полезными жирами, витаминами и минералами. Они содержат те же сахара, что и простые, но их цепи длиннее и их сложнее разбить. Именно из-за этого их вкус кажется не таким сладким. Более длинные цепи также замедляют пищеварение, а это приводит к более плавной реакцией инсулина и долгому чувству сытости. К продуктам, богатым на сложные углеводы, относятся: хлеб, рис, паста, бобы, цельное зерно и овощи.

Клетчатка – это тип пищевого волокна, которое не усваивается в организме. Уникальность клетчатки заключается в ее способности увеличиваться в размере и не перевариваться под действием пищевых ферментов, вырабатывающихся в желудке и тонком кишечнике. Набухшая растительная масса, проходя по всему желудочно-кишечному тракту, очищает его стенки от непереваренных остатков пищи, стимулирует перистальтику кишечника.

Значение углеводов для организма

Биологическая роль: в живых организмах углеводы выполняют следующие функции:

  • Энергетическую, которая осуществляется в процессе метаболизма. В результате окисления 1 г углеводов выделяется около 4 ккал энергии.
  • Гидроосмотическую – поддерживают осмотическое давление крови, обеспечивают ткани упругостью.
  • Структурную: участвуют в построении клетки, из них почти полностью состоят клетки суставов. Вместе с белками образуют ряд ферментов, секретов, гормонов.
  • Заняты в синтезе ДНК, АТФ, РНК.
  • Клетчатка и пектин способствуют функционированию кишечника.

Метаболизм углеводов

Метаболизм (обмен) углеводов в человеческом организме – сложный многостадийный процесс:

  • Расщепление сложных сахаров и полисахаридов на простые сахара, которые быстро всасываются в кровь.
  • Распад гликогена до глюкозы.
  • Аэробный распад глюкозы до пирувата, с его последующим аэробным окислением.
  • Анаэробное окисление глюкозы.
  • Взаимопревращения моносахаридов.
  • Образование из неуглеводных продуктов энергию.

Углеводы и инсулин

В цепочке превращений особое место занимает простой сахар – глюкоза. Нормальный обмен глюкозы в организме происходит с помощью специального гормона поджелудочной железы – инсулина. Он регулирует уровень сахара в крови человека за счёт уменьшения распада гликогена в печени и ускорения его синтеза в мышцах. Инсулин помогает глюкозе проникнуть внутрь клетки.

Нехватка инсулина нарушает углеводный обмен организма, приводит к развитию заболевания под названием сахарный диабет.

Нормы для взрослого человека

Потребность организма в углеводах напрямую зависит от степени его физической активности и составляет 250–600 г. Людям, регулярно нагружающим свой организм тренировками, нужно употреблять в сутки 500–600 г придерживаться следующих рекомендаций:

  • Нельзя злоупотреблять легкоусвояемыми углеводами, чтобы не провоцировать ожирение. Однако до и после тренировки разумное количество простых сахаров позволит быстро восстановить силы.
  • Следует обязательно употреблять полисахариды для нормальной работы кишечника;
  • Большую часть поступающих в организм углеводов должны составлять сложные сахара. Расщепляясь по сложной длительной схеме, они надолго обеспечат организм энергией.

Выбирайте правильные углеводы

Когда дело касается еды и напитков, выбирайте варианты, наполненные полезными микроэлементами и витаминами. В этом вам помогут три правила, представленные ниже. Но, отметим напоследок, что, если вы очень подвижный человек, который хочет повысить свою производительность, то не все эти правила вам подойдут.

  1. Ешьте больше сложных углеводов из натуральной пищи

Овощи, бобовые, орехи и семена, 100% цельнозерновой хлеб, паста, коричневый рис – эти продукты являются хорошим источником клетчатки, витаминов, минералов и протеина.

  1. Ешьте меньше обработанной пищи

Такая еда, как белый рис, белый хлеб и обычная паста – более обработана, а поэтому утеряла клетчатку.

  1. Ешьте простые углеводы в меру

Большинство источников простых (быстрых) углеводов считаются «пустыми калориями», потому что они практически не содержат микронутриентов, но при этом высоки в калорийности. Они также чаще всего становятся виновниками скачков сахара в крови. Фрукты и молоко являются исключениями, потому что в них высоко содержание витаминов и минералов.

Ваши потребности в углеводах

Чтобы полноценно функционировать, нашим телам нужны углеводы, в особенности глюкоза, которую организм предпочитает использовать для питания тканей и внутренних органов – и это единственный источник энергии для красных кровяных тельца. Когда телу не хватает углеводов, тело начинает использовать протеин из мышц и органов, чтобы создать глюкозу.


Рекомендованная Суточная Норма углеводов – 130 г. Это минимум, необходимый для здоровья мозга, красных кровавых телец и центральной нервной системы. Не получая достаточного количества энергии, вы рискуете потерять мышечную массу, которую вам организм будет тратить на создания глюкозы.

130 г. – это минимум для взрослых людей. Большинству людей нужно больше. По информации американских специалистов 45-65 процентов энергии от вашей ежедневной нормы калорий должна приходить из углеводов. Такая разница в процентах связана с тем, что каждый организм индивидуален и не существует единого подхода, который идеально подойдет сразу всем.

Примерная суточная норму углеводов должна составлять 50% от количества калорий в питании на день, но это усредненная цифра, которую мы советуем вам менять, в зависимости от ваших целей.

Как определить вашу ежедневную потребность?

  1. Решите какой процент протеина вам требуется и конвертируете его в десятичную дробь (к примеру, 50 % — 0,5)
  2. Умножьте вашу дневную норму калорий на полученное число и получите то количество калорий, которое вам нужно получить из углеводов.
  3. Разделите этот номер на 4, чтобы получить нужное количество углеводов в граммах.

Калькулятор

Если вы не уверены в том, какой процент углеводов подойдет именно вам, но просто следуйте правилу большого пальца:

Для похудения, начинайте с 45-50% и уменьшайте процент. При активных тренировках больше часа ежедневно или подготовке к событию, которое потребует от вас недюжинной выносливости (к примеру, марафон), то вам лучше увеличить процент до 55-65 %.

Вид активности Рекомендованная норма
Очень легкие весовые упражнения 3-5 г/кг
Упражнения средней интенсивности, 60 мин/д 5-7 г/кг
Упражнения на выносливости средней/высокой интенсивности, 1-3 ч/д 6-10 г/кг
Упражнения средней или высокой интенсивности, 4-5 ч/д 8-12 г/кг

Что вам нужно узнать о низкоуглеводном питании

Среднестатистическая «низкоуглеводная» диета уменьшает количество калорий, получаемых из углеводов до 40% и ниже. Мы не будем отрицать, что многие люди потеряли вес, используя этот подход к питанию, а также сохранили новую фигуру, следуя тем же правилам. Именно поэтому она и популярна, но спешим отметить, что это не единственный способ потерять вес и он подойдет не всем.

Низкоуглеводная диета (особенно ограничительная) сильно влияет на ваш уровень сахара в крови, что может привести к неприятным побочным эффектам. К ним относится чувство дискомфорта, дрожь, раздражительность, затуманенность зрения, проблемы с координацией, и многое другое. Из-за этих побочных эффектов людям может быть сложно придерживаться низкоуглеводной системы питания.

Если вы хотите поэкспериментировать с низкоуглеводной диетой, то вот вам шесть советов, которые помогут сделать переход к новому питанию более плавным:

  1. Не игнорируйте низкий уровень сахара

Нельзя с точностью назвать симптомы, которые вы испытаете, потому что они сильно отличаются от человека к человеку. Когда вы начнете переходить на низкоуглеводное питание, следите за симптомами пониженного сахара в крови (вы можете увидеть их ниже). Если вы заметит их у себя, то съешьте что-нибудь, богатое углеводами. К примеру, кусочек фрукта, крекеров или ломтик хлеба

  1. Облегчите себе переход

Используйте приложение для отслеживания вашего питания, как минимум, неделю после перехода, чтобы у вас было хорошее понимание того, сколько грамм углеводов вы ежедневно потребляете. Затем медленно понижайте число, по 5-10 процентов (30-50 г ежедневно) каждую неделю до того момента, как достигните своей цели. Также не забывайте повысить ваши нормы жиров и белков, чтобы заменить урезанные из вашей диеты углеводы.

  1. Выбирайте сбалансированную, полезную пищу

Убедитесь, что выбраны качественные продукты – цельнозерновых продуктов, фруктов и овощей – они также полны клетчаткой, витаминами  и минералами. Выбирайте качественные источники протеина: яйца, чечевицу, курицу, тофу и обезжиренную говядину и свинину. Предпочитайте ненасыщенные жиры из тех продуктов, которые содержат мононенасыщенные и полиненасыщенные жиры. К таким продуктам относятся: рыба, орехи, авокадо и оливковое масло.

  1. Не забывайте о воде

Если вы урезаете количество углеводов в вашем рационе, то вы, скорее всего, начнете потреблять больше протеина. Для того, чтобы ваше тело правильно использовала полученный белок, ему потребуется внушительное количество воды.

  1. Знайте о возможной быстрой потере веса

Если вы теряете больше одного килограма в неделю, будьте осторожны. Скорее всего, вы теряете вес от «воды» и мышц, а не из жира. Повысьте число потребляемых калорий, чтобы худеть медленнее, но терять не мышцы, а именно жир.

  1. Следите за уровнем своего счастья

Будьте честны с собой: Вы счастливы на низкоуглеводной диете? Хорошо ли вы себя чувствуете? Наше тело может приспособиться к любому количеству углеводов, но для некоторых людей, потребность в калориях и последствия низкого сахара могут быть почти невыносимыми. Если вам кажется, что в вашем рационе слишком мало углеводов, тогда не бойтесь вернуться к вашему обычному  режиму питания. Снижение уровня углеводов, повторимся, не единственный способ потерять вес и он не подойдет не для всех. У вас гораздо больше шансов сохранить свой вес и достигнуть поставленных целей, если вам будет комфортно в своем теле в процессе.

Что вам нужно знать о высокоуглеводном рационе?

Повышенный процент углеводов в рационе поможет положительно сказаться на выносливости и результатах ваших тренировок, в особенности, аэробных (бег, плаванье, велосипедная езда), потому что, чем больше углеводов вы едите, тем больше глюкозы ваше тело сохранит в виде мышечного гликогена. Чем больше гликогена он запасет, тем больше энергии у вас будет к следующей тренировке.

Для оптимальной тренировки важно то число углеводов, которое вы съели (в граммах), а не процент калорий, который организм получил из из них. Используйте этот гайд для того, чтобы вычислить рекомендованные граммы углеводов, необходимые в вашем ежедневном рационе.

Продукты, богатые углеводами

Правильное употребление углеводов предполагает сбалансированное употребление «быстрых» и «медленных». Для удобства составления индивидуального меню и характеристики продуктов с «углеводной точки зрения» был введён показатель – гликемический индекс, его часто обозначают аббревиатурой ГИ. Он показывает, как быстро изменится уровень глюкозы в крови после определённого продукта.

Более подробно о том, где содержатся углеводы с подробной таблицей.

Чем выше количественное значение этого уровня, тем больше вырабатывается инсулина, который помимо обмена глюкозы в организме выполняет функцию накопления жировых запасов. Чем чаще и сильнее происходят колебания глюкозы в крови, тем меньше шансов у организма запасти углеводы в мышцах.

Медленные, сложные углеводы характеризуются низким и средним ГИ, быстрые (простые) – высоким.

Низкий ГИ у:

  • капусты
  • бобовых
  • яблок
  • абрикос
  • слив
  • грейпфрута
  • персиков
  • яблок

Средний ГИ имеют:

  • овсяная крупа и печенье из неё
  • ананасы
  • зелёный горошек
  • рис
  • пшено
  • макароны
  • гречка

Продукты с высоким гликемическим индексом:

  • сладости
  • виноград
  • бананы
  • мёд
  • сухофрукты
  • картофель
  • морковь
  • белый хлеб

Углеводы в бодибилдинге

Для наращивания мышечной массы следует придерживаться следующих советов:

  • Употреблять необходимую для спортсменов суточную норму углеводов.
  • При составлении меню на день важно подбирать продукты исходя из их показателя ГИ. Продукты, имеющие низкий и/или средний ГИ нужно употреблять исходя из расчёта 2,5 г углеводов на 1 кг веса человека. Продукты с высоким ГИ должны поступать с пищей в количестве не более 2 г на 1 кг веса.
  • Идеальное время для того, чтобы съесть продукт с высоким уровнем ГИ – в течение 3 часов после тренировки.
  • Организм активно запасает углеводы в виде внутримышечного гликогена утром, не позднее, чем через 6 часов после того, как человек проснулся.

Углеводы и похудение

У многих углеводы ассоциируются исключительно со сладостями, а, следовательно, и с лишним весом. Однако существует несложный способ направить энергию на похудение. Речь не идёт о так называемых углеводных диетах, все же ограничение в белке и полезных жирах может негативно сказаться на здоровье организма. Поэтому такие кардинальные диеты возможны только после индивидуальной консультации с врачом.

Самостоятельно можно и нужно корректировать свой рацион. Однако делать это нужно правильно и прежде всего следует отказаться от быстрых углеводов. Занимающимся спортом разрешается съедать немного продуктов с высоким ГИ (их суточная дозировка не должна превышать 1 г на килограмм веса). Продукты с низким и/или средним гликемическим индексом нужно употреблять из расчёта: 2 г углеводов на 1 кг веса.

Нельзя отказывать себе в какой-то группе продуктов. Углеводы обязательно должны поступать из круп, овощей, фруктов, хлеба.

Углеводы должны быть важнейшей частью рациона любого человека, особенно если он занимается физическими нагрузками. Ведь они – основной источник энергии! Планируйте свой рацион правильно. Будьте энергичны и красивы!

Источники:  C.A. Rosenbloom, E.J. Coleman (Eds.) Sports Nutrition A Practice Manual for Professionals. 5th edition. Academy of Nutrition and Dietetics, Chicago, IL; 2012.

athleticbody.ru

Углеводы — это… Что такое Углеводы?

Углево́ды (сахара, сахариды) — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных[1].

Простые и сложные

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями. По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (дисахариды и полисахариды). Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием моносахаридов, мономеров. Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов), а в процессе гидролитического расщепления образуют сотни и тысячи молекул моносахаридов[2].

Моносахариды

Распространённый в природе моносахарид — бета-D-глюкоза.

Моносахари́ды (от греческого monos — единственный, sacchar — сахар) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]. Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (виноградный сахар или декстроза, C6H12O6) — шестиатомный сахар (гексоза), структурная единица (мономер) многих полисахаридов (полимеров) — дисахаридов: (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов[2].

Дисахариды

Дисахари́ды (от di — два, sacchar — сахар) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединённы друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных[3].

Олигосахариды

О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2 — 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее[3]. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях[3].

Полисахариды

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков[4].

Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения[2].

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6H10O5)p, а при полном гидролизе — глюкоза[4].

Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу[2].

Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозиюными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].

Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот спосбны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид»[2].

Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].

Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие)[2].

Пространственная изомерия

Слева D-глицеральдегид, справа L-глицеральдегид.

Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкоза, фруктоза, манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда[5].

Биологическая роль

В живых организмах углеводы выполняют следующие функции:

  1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[1].
  2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
  3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК)[6].
  4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6].
  5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[1].
  6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
  7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

Биосинтез

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

Cx(H2O)y + xO2 → xCO2 + yH2O + энергия.

В зеленых листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

xCO2 + yH2O → Cx(H2O)y + xO2

Обмен

Основная статья: Углеводный обмен

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов[4]:

  1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
  2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
  3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
  4. Взаимопревращение гексоз.
  5. Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
  6. Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

Важнейшие источники

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов

Примечания

  1. 1 2 3 4 Н. А. АБАКУМОВА, Н. Н. БЫКОВА. 9. Углеводы // Органическая химия и основы биохимии. Часть 1. — Тамбов: ГОУ ВПО ТГТУ, 2010. — ISBN 978-5-8265-0922-7
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 1-е изд. — М.: Медицина, 1985. — С. 349—400. — 480 с. — (Учебная литература для студентов медицинских институтов). — 75 000 экз.
  3. 1 2 3 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 234—235. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8
  4. 1 2 3 4 5 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 235—238. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8
  5. Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия: Учебник / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 226—276. — 528 с. — 100 000 экз. — ISBN 5-225-01515-8
  6. 1 2 А. Я. Николаев. 9. Обмен и функции углеводов // Биологическая химия. — М.: Медицинское информационное агентство, 2004. — ISBN 5-89481-219-4

Ссылки

  • Углеводы  (рус.). — строение и химические свойства.(недоступная ссылка — история) Проверено 1 июня 2009.
  Углеводы
Общие: Альдозы · Кетозы · Фуранозы · Пиранозы
Геометрия Аномеры · Мутаротация · Проекция Хоуорса
Моносахариды
Диозы Альдодиоза (Гликольальдегид)
Триозы Кетотриоза (Дигидроксиацетон) · Альдотриоза (Глицеральдегид)
Тетрозы Кетотетроза (Эритрулоза) · Альтотетрозы (Эритроза, Треоза)
Пентозы Кетопентозы (Рибулоза, Ксилулоза)

Альдопентозы (Рибоза, Арабиноза, Ксилоза, Ликсоза)

Дезоксисахариды (Дезоксирибоза)

Гексоза Кетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)

Гептозы Кетогептозы (Седогептулоза, Манногептулоза)
>7 Октозы · Нанозы (Нейраминовая кислота)
Мультисахариды
Производные углеводов

Плазмозамещающие и перфузионные растворы — АТХ код: B05

 

B05A
Препараты крови
B05B
Растворы для в/в введения
B05C
Ирригационные растворы
B05D
Растворы для перитонеального диализа
B05X
Добавки к растворам для в/в введения
B05Z

dic.academic.ru

Углеводы: подробный разбор. Полнеют ли от фруктов?

Для нормальной, активной жизни, для любви, для спорта нам необходима энергия, которой нас обеспечивают углеводы.

Углеводы – это природные органические соединения, состоящие из углерода и воды. Являясь главным поставщиком энергии, их количество составляет всего 2% от общих запасов энергии организма, на жиры приходится 80%, а на белки 18% запасов энергии.

По своему строению углеводы делятся на:

🍭 моносахариды и дисахариды — простые (или быстрые) углеводы.

🍞 полисахариды — сложные (или комплексные) крахмалистые углеводы;

🍠 сложные углеводы на основе клетчатки;

Содержание статьи

ПРОСТЫЕ УГЛЕВОДЫ

Простые углеводы ли же моно- и дисахариды легко растворяются в воде и быстро усваиваются. Они также называются сахара.

Моносахариды – это хорошо известные нам глюкоза и фруктоза.

  • 🍭Глюкоза
  • Глюкоза — самый распространенный моносахарид. Она содержится во многих продуктах в готовом виде и также образуется в организме в результате расщепления дисахаридов и крахмала.

    Глюкоза быстро поступает в кровь и сразу же готова быть использована для энергии, которая нужна прямо в данный момент. Если энергия пока не требуется, то глюкоза будет отложена про запас в виде мышечного гликогена.

    Повторим еще раз: все сложные углеводы (будь то конфета или хлеб с отрубями) сначала расщепляются до глюкозы и только после этого усваиваются организмом. Глюкоза наиболее быстро и легко используется в организме для образования гликогена, для питания тканей мозга, мышц, для поддержания необходимого уровня сахара в крови и создания запасов гликогена печени.

    Попадая в ЖКТ, углеводы перевариваются до состояния глюкозы, далее поступают в печень, которая считается главной лабораторией по распределению веществ. Именно здесь наступает процесс распределения, в зависимости от нужд. Имеется три основных направлений: мгновенное насыщение крови, для обеспечения запущенных энергетических процессов; синтез гликогена; синтез жиров. Все зависит от потребностей организма в данный момент. В том случае, когда глюкоза не используется сразу по назначению, а все равно поступает в клетки, она запасается под видом жировых отложений или в гликоген (если гликогеновые депо пусты). Если клетки печени и мышечных групп перенасыщаются, то продолжающая доставляться еще глюкоза преобразуется в жиры и направляется в их ткани.

    Гликоген — это быстро усваиваемый углевод, «дремлящий» до поры до времени. Данную формулировку понимать так: до тех пор, пока в организме достаточно прочих источников энергии, гликогеновые гранулы будут храниться в нетронутом виде. Но как только мозг подаст сигнал о недостатке энергетического обеспечения, гликоген под воздействием ферментов начинает преобразовываться в глюкозу.Гликоген – это наша чистая энергия. Если вы не двигаетесь, много не думаете (бывает), то значит и энергия не тратится.

    Произойдет ли с глюкозой преобразование в гликоген зависит от многих факторов: физическая активность, питание, недостаток/избыток калорий. Чем больше активность, тем больше глюкозы человек может усвоить.

  • Фруктоза

Фруктоза – это как и глюкоза, ценный, легкий для усвоения сахар.

Однако она медленнее усваивается и в значительном количестве (до 70 — 80%) задерживается в печени, не вызывая перенасыщение крови сахаром. В печени фруктоза более легко превращается в гликоген (а значит, не откладывается в жир) по сравнению с глюкозой. Фруктоза усваивается лучше сахарозы и отличается большЕй сладостью. Основными источниками фруктозы являются фрукты, ягоды, сладкие овощи.

НО: Если вы потребляете много калорий и свою норму глюкозы уже получили, то депо гликогена в печени уже переполнены, поэтому фруктозе ничего не остается как превратиться в жир.

Если вы находитесь на дефиците калорий, получаете их меньше, чем тратите, то фруктоза превращается не в жир, а в глюкозу или гликоген, которые используются для энергообеспечения организма.

Т.е. ТОЛЬКО ОТ ВАС (вашего колаража и активности) зависит, что будет продуцировать печень: ЖИР или ГЛИКОГЕН, который насыщает весь организм (и даже мозг) энергией.

При поступлении с пищей значительных количеств сахаров (глюкозы или фруктозы) они не могут полностью откладываться в виде гликогена, а в крови происходит повышение уровня инсулина. Кстати, инсулин оказывает мощное стимулирующее действие на жироотложение.

Основными пищевыми источниками глюкозы и фруктозы служит мед: содержание глюкозы достигает 36.2%, фруктозы — 37.1%. В арбузах весь сахар представлен фруктозой, количество которой составляет 8%. В семечковых преобладает фруктоза, а в косточковых (абрикосы, персики, сливы) — глюкоза.

По сути, большого значения вид углеводов не имеет. Не верите? Тогда статья «Гибкая диета или резиновая?» для вас.

Полнеют ли от фруктов?

Забудьте этот устоявшийся миф о невероятной калорийности фруктов и правиле «до 16».
В пределах нормы считается потреблять ежедневно около 60 граммов ЧИСТОЙ фруктозы (не углеводов, содержащихся в фруктах, а именно фруктозы).

НО: Для того, чтобы съесть 60 граммов чистой фруктозы из свежих фруктов, нужно есть их килограммами.
Фрукты содержат много воды и клетчатки, а кроме того, очень быстро создают чувство сытости.

Кушайте, кушайте фрукты! Это прекрасный источник витаминов, клетчатки и минералов, который в большинстве своем содержит низкое количество калорий.

Часто спрашивают: фрукты это углеводы или клетчатка? Ответ простой: это и то и то. И, кстати, клетчатка — это тоже углеводы, просто нерасщепляемые и плохо усваиваемые.

Фруктоза, понятно о сложном

Возможный способ наесть избыток фруктозы — употреблять сладкие напитки, обычный сахар (в нем 50% фруктозы), фруктозные сиропы, сладости и подсластители.

Кстати, после тренировки самым полезным и питательным для ваших мышц будет коктейль из сывороточного протеина и банана или виноградного натурального сока. Вы напитаете организм фруктозой, которая заполнит истощившиеся за время тренировки гликогеновые депо и подпитаете мышцы белками.

Самое главное, люди, которые поддерживают дефицит калорий и регулярно занимаются спортом, не должны бояться фруктозы.

Банан: друг или враг?

Вы располнеете даже на гречке, если будете есть ее килограммами. Жиреют от общего избытка калорий, а не от фруктов. Поэтому фрукты и любые другие продукты можно есть в любое время суток, если вы не выходите за пределы вашей нормы калорийности.

Любые ограничения по поводу времени приема углеводов не более чем попытка заставить человека есть меньше в течение дня, если он не считает калории.

Ни один из продуктов или питательных веществ не является единственной причиной лишнего веса. Люди набирают вес, когда они регулярно едят больше калорий, чем им нужно.

ИТОГ: Вредны большие количества ЧИСТОЙ глюкозы, которые невозможно получить из фруктов.

ПРОСТЫЕ УГЛЕВОДЫ.ДИСАХАРИДЫ

Из дисахаридов в питании человека основное значение имеет сахароза, которая при гидролизе распадается на глюкозу и фруктозу.

  • 🍩Сахароза
  • Сахароза — это обычный сахар: коричневый (тростниковый) или же наш, родной, получаемый из свеклы белый сахар. Содержание сахарозы в сахаре-песке составляет 99.75%.

    Избыток сахарозы это верный путь к ожирению. Установлено, что при избыточном поступлении сахара усиливается превращение в жир всех пищевых веществ (крахмала, жира, пищи, частично и белка). Таким образом, количество поступающего сахара может служить фактором, регулирующим жировой обмен. Обильное потребление сахара приводит к нарушению обмена холестерина и повышению его уровня в крови. Избыток сахара отрицательно сказывается на функции кишечной микрофлоры.

    При этом повышается удельный вес гнилостных микроорганизмов, усиливается интенсивность гнилостных процессов в кишечнике, развивается метеоризм. Впрочем, это не удивительно, при избыточном потреблении сахара в вас происходит классический процесс «брожение» прям как в бутылке с самогоном. В наименьшей степени эти недостатки проявляются при потреблении фруктозы.

  • 🍶Лактоза

Лактоза (молочный сахар) — основной углевод молока и молочных продуктов. Ее роль весьма значительна в раннем детском возрасте, когда молоко служит основным продуктом питания.

Однако с возрастом фермент лактозы, расщепляющий лактозу до глюкозы и галактозы, либо совсем исчезает, либо постепенно сходит на нет и наступает непереносимость молока.

Я лично рано начала испытывать рвотные позывы при виде молока, т.ч. если ваш ребенок перестал пить молоко – НЕ ПИХАЙТЕ В НЕГО, вполне вероятно, что фермент лактозы покинул его раз и навсегда 🙁

Полисахариды — сложные (или комплексные) крахмалистые углеводы

Cложные крахмалистые углеводы – это в основном продукты, содержащие крахмал (очень неожиданно:) ).

Сильнокрахмалистые продукты не стоит активно употреблять, т.к. молекулы крахмала имеют сложное строение и не растворяются, а лишь увеличиваются в размерах — набухают, при этом забирая жидкость из организма. В результате потребления крахмалистых продуктов в нашем ЖКТ получается «клейстер». Он мешает пищеварению и обезвоживает организм, прилипает к стенкам, образуя каловые камни.

Крахмал переваривается очень медленно (поэтому от таких продуктов долгое чувство сытости) и расщепляется до глюкозы. Но в разных продуктах и скорость переваривания крахмала разная. Из манной крупы и риса он переваривается быстрее и легче, чем из перловой, гречневой, ячневой круп и пшена. В натуральном виде, например в киселе, крахмал усваивается очень быстро.

Примеры крахмалистых продуктов:

  • 55 – 70% — в макаронах и крупах;
  • 40 – 45% — в бобовых;
  • 30 – 40% — в хлебе;
  • 16% — в картофеле.
  • Важные моменты, на которые стоит обратить внимание:

    🍞 Крахмалы с другими продуктами сочетаются плохо, но сочетаются хорошо между собой;

    🍞 Лучше всего употреблять крахмалы с сырыми овощами или овощными салатами, т.к. клетчатка способствует лучшей проходимости пищи по ЖКТ и ее благоприятному перевариванию;

    🍞 Лучшее усвоение крахмалов возможно при достаточном количестве в организме витаминов группы В;

    Продукты, в которых содержание крахмала невысокое:

    Тыква, чеснок, кольраби, горох, артишок, капуста, спаржа, цикорий, красный и зеленый перец, грибы, редис, пастернак, шпинат, петрушка.

    Растительная пища, не содержащая крахмал:

    Белокочанная капуста, огурцы, помидоры, красная капуста, лук репчатый, корнишоны, ревень, брюква, брюссельская капуста, салат-латук, цветная капуста, укроп, баклажаны, крапива, одуванчики, морковь, брокколи, лук-шалот, щавель, лук-порей.

    Продукты, содержащие крахмал, хорошо насыщают организм, предупреждая переедание. Без хлеба, круп, картофеля рацион питания трудно назвать сбалансированным.

    Конечно, избыточное поедание макарон и даже гречневой каши без масла определенно приведет к лишнему жиру на бедрах и других частях тела. Но полностью исключать такие продукты нельзя. Во всем нужна умеренность, особенно в питании.

    Сложные углеводы на основе клетчатки

    Что такое вообще клетчатка и почему она важна?

    Клетчатка относится к питательным веществам, которые, подобно воде и минеральным солям, не обеспечивают организм энергией, но играют огромную роль в его жизнедеятельности. Т.е. углеводы (а значит и калории) из клетчатки не усваиваются, ешьте ее спокойно!

    Высоким содержанием клетчатки характеризуются зерновые продукты, фрукты, овощи.

    Однако помимо общего количества клетчатки, значение имеет ее качество. Негрубая клетчатка хорошо расщепляется в кишечнике и лучше усваивается, служит «щеточкой» для ЖКТ, это, например, клетчатка картофеля и овощей. Клетчатка способствует выведению из организма холестерина.

    СКОЛЬКО УПОТРЕБЛЯТЬ УГЛЕВОДОВ:

    Сколько употреблять углеводов в день зависит В ПЕРВУЮ ОЧЕРЕДЬ от вашей активности.

    Средняя потребность в углеводах для тех, кто не занят тяжелым физическим трудом, 400 — 500 г. в сутки. У спортсменов по мере увеличения интенсивности и тяжести физических нагрузок потребность в углеводах увеличивается и может возрастать до 800 г в сутки.

    Согласно рекомендациям диетологов, человек должен получать из углеводов от 50% до 60% всех калорий.

    ОЧЕНЬ ВАЖНО: Дорогие мои, разрушьте в своих головах стереотип навязанный всякими «сушильщиками» и «икспертами» — больше всего в вашем рационе должно быть УГЛЕВОДОВ, на втором месте — белок, на третьем — жиры. Об опасности перенасыщения белками читайте «Незаменимый белок или сушка: вход воспрещен. Список продуктов, богатых белком.»

    Чтобы рассчитать дневную норму потребления углеводов, также можно умножить вес человека на 4.62 г. По этой формуле, человеку весом, к примеру, 60 кг требуется чуть больше 277 г углеводов в день.

    Потребность в углеводах может увеличиваться при интенсивных физических нагрузках — это необходимо учитывать, планируя свой рацион.

    Почему углеводы такой важный источник энергии?

    Углеводы сберегают наш белок и незаменимые аминокислоты, содержащиеся в нем. При поступлении с пищей достаточного количества углеводов аминокислоты лишь в незначительной степени используются в организме как энергетический материал.

    Если не есть углеводы, то организм не растеряется и начнет образовывать их из аминокислот и глицерина. Звучит вроде и не страшно, но данный процесс легко провоцирует кетоз, кислое состояния крови, если для образования энергии используются преимущественно запасы жира. Дальнейшее снижение количества углеводов ведет к резким нарушениям метаболических процессов.

    Если употреблять слишком много углеводов, больше, чем организм может преобразоваться в глюкозу или гликоген, то вас разнесет, причем неважно, быстрые или медленные углеводы вы будете кушать.

    Когда телу нужно больше энергии, то жир преобразуется обратно в глюкозу, и вес тела снижается. Да, это сложно, но вникните: чтобы похудеть вам нельзя голодать, вы просто должны кушать чуть меньше, чем нужно!

    Т.е. ваш рацион должен удовлетворять ваши потребности в необходимом количестве углеводов,белков и жиров, но при этом быть чуть-чуть недостаточным для вашей активности.

    Отдавайте предпочтение крахмальным углеводам и углеводам, богатыми клетчаткой, т.к. они медленно расщепляются в кишечнике. Содержание сахара в крови при этом нарастает постепенно. На их долю должно приходиться 60% от общего количества потребляемых углеводов. Не забывайте и о фруктах и овощах. Кстати, углеводы из овощей можно не считать.

    [Всего голосов: 0    Средний: 0/5]

    Данная статья проверена дипломированным диетологом, который имеет степень бакалавра в области питания и диетологии, Веремеевым Д.Г.

    kost-shirokaya.ru

    Углеводы — это… Что такое Углеводы?

    Углево́ды (сахара, сахариды) — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

    Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных[1].

    Простые и сложные

    Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями. По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (дисахариды и полисахариды). Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием моносахаридов, мономеров. Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов), а в процессе гидролитического расщепления образуют сотни и тысячи молекул моносахаридов[2].

    Моносахариды

    Распространённый в природе моносахарид — бета-D-глюкоза.

    Моносахари́ды (от греческого monos — единственный, sacchar — сахар) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]. Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

    В природе в свободном виде наиболее распространена D-глюкоза (виноградный сахар или декстроза, C6H12O6) — шестиатомный сахар (гексоза), структурная единица (мономер) многих полисахаридов (полимеров) — дисахаридов: (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов[2].

    Дисахариды

    Дисахари́ды (от di — два, sacchar — сахар) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединённы друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных[3].

    Олигосахариды

    О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2 — 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее[3]. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

    Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях[3].

    Полисахариды

    Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков[4].

    Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения[2].

    Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

    Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6H10O5)p, а при полном гидролизе — глюкоза[4].

    Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

    Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу[2].

    Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозиюными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].

    Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот спосбны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид»[2].

    Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].

    Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие)[2].

    Пространственная изомерия

    Слева D-глицеральдегид, справа L-глицеральдегид.

    Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

    Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкоза, фруктоза, манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда[5].

    Биологическая роль

    В живых организмах углеводы выполняют следующие функции:

    1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[1].
    2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
    3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК)[6].
    4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6].
    5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[1].
    6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
    7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

    Биосинтез

    В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

    Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

    Cx(H2O)y + xO2 → xCO2 + yH2O + энергия.

    В зеленых листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

    xCO2 + yH2O → Cx(H2O)y + xO2

    Обмен

    Основная статья: Углеводный обмен

    Обмен углеводов в организме человека и высших животных складывается из нескольких процессов[4]:

    1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
    2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
    3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
    4. Взаимопревращение гексоз.
    5. Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
    6. Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

    Важнейшие источники

    Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.

    Для обозначения количества углеводов в пище используется специальная хлебная единица.

    К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

    Список наиболее распространенных углеводов

    Примечания

    1. 1 2 3 4 Н. А. АБАКУМОВА, Н. Н. БЫКОВА. 9. Углеводы // Органическая химия и основы биохимии. Часть 1. — Тамбов: ГОУ ВПО ТГТУ, 2010. — ISBN 978-5-8265-0922-7
    2. 1 2 3 4 5 6 7 8 9 10 11 12 Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 1-е изд. — М.: Медицина, 1985. — С. 349—400. — 480 с. — (Учебная литература для студентов медицинских институтов). — 75 000 экз.
    3. 1 2 3 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 234—235. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8
    4. 1 2 3 4 5 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 235—238. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8
    5. Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия: Учебник / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 226—276. — 528 с. — 100 000 экз. — ISBN 5-225-01515-8
    6. 1 2 А. Я. Николаев. 9. Обмен и функции углеводов // Биологическая химия. — М.: Медицинское информационное агентство, 2004. — ISBN 5-89481-219-4

    Ссылки

    • Углеводы  (рус.). — строение и химические свойства.(недоступная ссылка — история) Проверено 1 июня 2009.
      Углеводы
    Общие: Альдозы · Кетозы · Фуранозы · Пиранозы
    Геометрия Аномеры · Мутаротация · Проекция Хоуорса
    Моносахариды
    Диозы Альдодиоза (Гликольальдегид)
    Триозы Кетотриоза (Дигидроксиацетон) · Альдотриоза (Глицеральдегид)
    Тетрозы Кетотетроза (Эритрулоза) · Альтотетрозы (Эритроза, Треоза)
    Пентозы Кетопентозы (Рибулоза, Ксилулоза)

    Альдопентозы (Рибоза, Арабиноза, Ксилоза, Ликсоза)

    Дезоксисахариды (Дезоксирибоза)

    Гексоза Кетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

    Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

    Дезоксисахариды (Фукоза, Фукулоза, Рамноза)

    Гептозы Кетогептозы (Седогептулоза, Манногептулоза)
    >7 Октозы · Нанозы (Нейраминовая кислота)
    Мультисахариды
    Производные углеводов

    Плазмозамещающие и перфузионные растворы — АТХ код: B05

     

    B05A
    Препараты крови
    B05B
    Растворы для в/в введения
    B05C
    Ирригационные растворы
    B05D
    Растворы для перитонеального диализа
    B05X
    Добавки к растворам для в/в введения
    B05Z

    dik.academic.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *