Вторник, 24 декабря

Роль белка: 1.3. Биологическая роль белка и его важнейшие источники

1.3. Биологическая роль белка и его важнейшие источники

1.3. Биологическая роль белка и его важнейшие источники

Белки – жизненно необходимые и незаменимые вещества, без которых невозможны не только рост и развитие организма, но и сама жизнь. Они являются основным пластическим материалом для построения всех клеток, тканей и органов тела человека, образования ферментов, гормонов и других соединений, выполняющих в организме особо важные и сложные функции.

Белки составляют 54 % массы тела человека. Все ферменты, участвующие в превращениях и усвоении белков и других пищевых веществ, имеют белковую природу, поэтому при недостатке белка в пище снижается ферментативная активность организма и развиваются нарушения как в переваривании, так и в обмене всех веществ – белков, жиров и углеводов. При дефиците белка нарушается образование гормонов и, как следствие, работа сердечно-сосудистой системы, опорно-двигательного аппарата, мочеполовой и других систем организма.

Кроме того, белок в организме играет большую защитную роль. Из особого белка глобулина формируются антитела – вещества, определяющие защитные силы организма, невосприимчивость человека к инфекциям. Белки обезвреживают попавшие в организм человека яды и токсины, выполняют антитоксическую роль. Достаточное количество белка в пище повышает устойчивость к стрессам, которые могут быть причиной многих заболеваний. Помимо перечисленных, белок выполняет много других функций: обеспечение процессов свертывания крови, перенос кислорода с кровью, мышечное сокращение, передача наследственных признаков, транспорт различных веществ в организме, образование макроэргических соединений (АТФ) и т. д.


Как источник энергии, белки имеют второстепенное значение, так как могут быть заменены жирами и углеводами. При окислении в организме 1 г белка дает 4 ккал (16,7 кДж). Именно многообразие свойств белка, его участие в основных жизненных процессах подтверждают, что белок является основой жизни. Этот факт отмечали еще древние греки: другое название белков – протеины (от слова «протос», что означает «главный, единственный»).

Для того чтобы обеспечить все важнейшие жизненные процессы, необходимо достаточное поступление белка в организм. При этом белок, в отличие, например, от жиров и углеводов, не может синтезироваться в организме, не заменяется другими пищевыми веществами, не накапливается про запас. В то же время он частично расходуется на образование жира и углеводов при их дефиците в пищевом рационе. Единственным источником белков служит пища, поэтому белки пищи являются абсолютно необходимой составной частью рациона человека.

Белки пищи – сложные органические соединения, состоящие из большого количества аминокислот (более 20). Не все аминокислоты равноценны по своему значению для организма. Они делятся на заменимые и незаменимые (или жизненно необходимые). Заменимые аминокислоты названы так потому, что они могут синтезироваться в организме из других, незаменимые – в организме не синтезируются и обязательно должны содержаться в пище в достаточном количестве. Незаменимые аминокислоты (валин, метионин, лейцин, триптофан, лизин и др.) содержатся в наибольшем количестве и наилучших соотношениях в белках животного происхождения (яйца, молоко, мясо, рыба и т. д.), то есть в белках высокой биологической ценности, отличающихся сбалансированностью аминокислот, легкой перевариваемостью и хорошей усвояемостью. Заменимые аминокислоты содержатся преимущественно в белке растительных продуктов (хлеб, крупа, бобовые), и в случае дефицита этих продуктов в рационе на синтез незаменимых аминокислот в организме расходуются заменимые аминокислоты.

Чтобы обеспечить организм достаточным количеством незаменимых и заменимых аминокислот, в состав пищевого рациона должны входить как более полноценные (животные) белки, содержащие все незаменимые аминокислоты, так и менее полноценные (растительные). Наиболее благоприятно соотношение животного и растительного белка в рационе 1:1.

Чтобы избежать дефицита тех или других аминокислот, рекомендуется сочетать в каждом приеме пищи менее ценные растительные белки (хлеб, крупы, бобовые) с белками животного происхождения (молоко, творог, сыр, мясо, рыба, яйца) – это могут быть каши на молоке, хлеб с молоком, мучные изделия с творогом, вареники, мучные изделия с мясом, котлеты с макаронами и т. п. В то же время сочетание круп и злаковых продуктов с капустой, картофелем менее оправданно, так как не улучшает аминокислотного состава рациона. Важен тот факт, что при правильном сочетании растительного и животного белка улучшается усвоение растительных белков, из которых в кишечнике всасывается 60-80 % аминокислот, тогда как из белков животных продуктов – более 90 %.

Наиболее быстро перевариваются белки молочных продуктов и рыбы, затем мяса (белки говядины быстрее, чем свинины и баранины), хлеба и круп (быстрее – белки пшеничного хлеба из муки высших сортов и манной крупы). Нарушают переваривание белка некоторые содержащиеся в горохе, фасоли, сое вещества, которые снижают переваривающую активность пищеварительных ферментов. Тепловая обработка, длительное разваривание, измельчение, протирание улучшают переваривание белков.

Потребность человека в пищевом белке может изменяться в зависимости от пола, возраста, уровня физической активности, интенсивности труда, при некоторых заболеваниях.

В среднем потребность взрослого человека в белке составляет 80-100 г в сутки, или 1,1-1,3 г белка на 1 кг массы тела, что обеспечивает 10-15 % энергетических потребностей организма за счет белка. Потребность растущего организма в белке выше и зависит от возраста. Если на первом году жизни ребенок должен получать более 4 г белка на 1 кг массы тела, то в последующие годы потребность в белке снижается. Так, потребность в белке для девушек составляет в среднем 90 г, для юношей – 100 г в сутки.

Высокая потребность в белке у детей и подростков объясняется тем, что в растущем организме преобладают синтетические процессы и белок пищи необходим не только для поддержания азотистого равновесия, но и для обеспечения роста, увеличения массы тела, формирования скелета и мускулатуры. Количество белков животного происхождения, содержащих незаменимые аминокислоты, которые особенно необходимы для растущего организма, должно составлять не менее 60 % от общего количества белка в рационе.

Химический состав продуктов, используемых в качестве основных источников белка, представлен в таблице 1.

emp1

Таблица 1

Химический состав продуктов, используемых в качестве основных источников белка (в 100 г продукта), и их энергетическая ценность[1]

Необходимо отметить, что однообразное питание, состоящее преимущественно из растительных белков или только из белков животного происхождения, значительно ухудшает усвоение и использование белка в организме. Важны не только общее количество и качество белка в суточном рационе, но и обязательно разнообразие пищи, ежедневное употребление таких источников белка, как молоко, рыба, крупы, зерновые продукты, яйца, мясо.

Белковая недостаточность возникает от резкого уменьшения белков в пище при полном или частичном голодании, систематическом поступлении в организм белков низкой биологической ценности, длительном ограничении приема пищи (у алкоголиков, наркоманов, при болезнях желудочно-кишечного тракта), ведущих к недостаточному перевариванию и всасыванию пищевых белков, потере белков и нарушению их синтеза в организме при различных болезнях (активный туберкулез, заболевания органов пищеварения, инфекции и др.). Белковая недостаточность ведет к ухудшению функций пищеварительной, эндокринной, кроветворной и других систем организма, атрофии мышц. Снижается работоспособность, сопротивляемость к инфекциям, замедляется выздоровление при различных заболеваниях. Избыточное поступление пищевых белков также сказывается на организме. Оно ведет к перегрузке печени и почек продуктами распада белка, перенапряжению секреторной функции пищеварительного аппарата, накоплению в организме продуктов азотистого обмена и др.









Данный текст является ознакомительным фрагментом.




Продолжение на ЛитРес








ROLE OF S100 PROTEIN IN THE PATHOGENESIS OF PAIN SYNDROMES | Simkhes

1. Merskey H, Bogduk N, editors. Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. 2nd ed. Seattle: IASP Press; 1994. 222 p.

2. Дамулин ИВ. Особенности депрессии при неврологических заболеваниях. Журнал

3. неврологии и психиатрии им. С.С. Корсакова. 2005;(10):55-6. [Damulin IV. Features of depression in neurological diseases. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2005;(10):55-6. (In Russ.)].

4. Кукушкин МЛ. Хроническая боль. Неврология, нейропсихиатрия, психосоматика. 2010;2(3):80-6. [Kukushkin ML. Chronic pain. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, neuropsychiatry, psychosomatics. 2010;2(3):80-6. (In Russ.)]. DOI:10.14412/2074-2711-2010-107.

5. Вышлова ИА, Карпов СМ, Стародубцев АИ. Нейроиммунологические механизмы формирования хронического болевого синдрома. Неврология, нейропсихиатрия, психосоматика. 2016;8(2):113-6. [Vyshlova IA,Karpov SM, Starodubtsev AI. Neuroimmunological mechanisms of chronic pain syndrome. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2016;8(2):113-116. (In Russ.)]. DOI:10.14412/2074-2711-2016-2-113-116.

6. Малашхия ЮА, Надарешвили ЗГ, Малашхия НЮ, Малашхия ВЮ. Мозг как орган иммунитета. Журнал неврологии и психиатрии им. С.С. Корсакова. 1999;99(9):62-3. [Malashkhiya YuA, Nadareshvili ZG, Malashkhiya NYu, Malashkhiya VYu. The brain as the organ of immunity. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 1999;99(9):62-3. (In Russ.)].

7. Сепиашвили РИ. Иммунная система мозга и спинномозговой жидкости. Аллергология и иммунология. 2013;14(4):241–53. [Sepiashvili RI. The immune system of the brain and cerebrospinal fluid. Allergologiya i immunologiya. 2013;14(4):241-53. (In Russ.)].

8. Миронов СП, Ветрилэ СТ, Космиади ГА, Швец ВВ. Роль клеток иммунной системы в дегенеративных изменениях межпозвонкового диска. Вестник травматологии и ортопедии. 2007;(3):16-22. [Mironov SP, Vetrile ST, Kosmiadi GA, Shvets VV. The role of immune system cells in degenerative changes in the intervertebral disc. Vestnik travmatologii i ortopedii. 2007;(3):16-22. (In Russ.)].

9. Brisby H, Olmarker K, Larsson K, et al. Proinflammatory cytokines in cerebrospinal fluid and serum in patients with disc herniation and sciatica. Eur Spine J. 2002 Feb;11(1):62-6.

10. Moore B, Mc Gregor D. Chromatographic and electrophoretic fraction of soluble protein of brain and liver. J Biol Chem. 1965;240(4): 1642-53.

11. Heizmann CW, Fritz G, Schö fer BW. S100 proteins: structure, functions and pathology. Front Biosci. 2002 May 1;7:d1356-68.

12. Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun. 2004 Oct 1;322(4):1111-22.

13. Муравьев ЮВ, Лебедева ВВ. Кальцийсвязывающие белки при ревматических заболеваниях. Научно-практическая ревматология. 2012;50(1):60-4. [Murav’ev YuV, Lebedeva VV. Calcium-binding proteins in rheumatic diseases. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practice. 2012;50(1):60-4. (In Russ.)]. DOI: 10.14412/1995-4484-2012-506

14. Клюшник ТП, Стаховская ЛВ, Шерстнев ВВ и др. Роль аутоиммунных механизмов в повреждающем действии церебральной ишемии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2001;(1):46-54. [Klyushnik TP, Stakhovskaya LV, Sherstnev VV, et al. Role in autoimmune mechanismsdamaging effect of cerebral ischemia. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2001;(1):46-54. (In Russ.)].

15. Нечунаева ЕВ, Шумахер ГИ, Воробьёва ЕН и др. Иммунобиохимические показатели в ранней диагностике хронической ишемии головного мозга. Бюллетень сибирской медицины. 2011; (2):142–6. [Nechunaeva EV, Shumakher GI, Vorob’eva EN, et al. Immunal and biochemical indexes in early diagnostics of chronic brain ischemia. Byulleten’ sibirskoi meditsiny. 2011;(2):142-6. (In Russ.)].

16. Pagano RL, Mariano M, Giorgi R. Neutrophilic cell-free exudate induces antinociception mediate by the protein S100A9. Mediators Inflamm. 2006;2006(4):36765.

17. Paccola CC, Gutierrez VP, Longo I, et al. Antinociceptive effect of the C-terminus of murine S100A9 protein on experimental neuropathic pain. Peptides. 2008 Oct;29(10):1806-14. DOI: 10.1016/j.peptides.2008.05.023.

18. Dale CS, Altier C, Cenac N, et al. Analgesic properties of S100A9 C-terminal domain: a mechanism dependent on calcium channel inhibition. Fundam Clin Pharmacol. 2009 Aug;23(4):427-38. DOI: 10.1111/j.1472-8206.2009.00686.x.

19. Vogl T, Tenbrock K. Ludwig S. Mrp8 and Mrp14 are endogenous activators of Tollike receptor 4, promoting lethal, endotoxininduced shock. Nat Med. 2007 Sep;13(9): 1042-9. Epub 2007 Sep 2.

20. Cheng P, Corzo CA, Luetteke N, et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med. 2008;205(10):2235-49. DOI: 10.1084/jem.20080132.

21. Gebhardt C, NОmeth J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol. 2006 Nov 30;72(11): 1622-31. Epub 2006 Jul 17.

22. Hermani A, De Servi B, Medunjanin S, et al. S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res. 2006 Jan 15;312(2): 184-97. Epub 2005 Nov 17.

23. Srikrishna G. S100A8 and S100A9: New Insights into Their Roles in Malignancy. J Innate Immun. 2012;4(1):31-40. DOI: 10.1159/000330095

24. Mahler EA, Zweers MC, van Lent PL, et al. Scand Association between serum levels of the proinflammatory protein S100A8/A9 and clinical and structural characteristics of patients with established knee, hip, and hand osteoarthritis. J Rheumatol. 2015;44(1):56-60. DOI: 10.3109/03009742.2014.918176.

25. Pagano RL, Moraes NF, De Lorenzo BH, et al. Inhibition of macrophage functions by the C-terminus of murine S100A9 is dependent on B-1 cells. Mediators Inflamm. 2014;2014:836491. DOI: 10.1155/2014/836491

26. Vora AN, Bonaca MP, Ruff CT, et al. Diagnostic evaluation of the MRP-8/14 for the emergency assessment of chest pain. J Thromb Thrombolysis. 2012 Aug;34(2):229-34. DOI: 10.1007/s11239-012-0705-y.

27. Schaub N, Reichlin T, Meune C, et al. Markers of plaque instability in the early diagnosis and risk stratification of acute myocardial infarction. Clin Chem. 2012 Jan;58(1):246-56. DOI: 10.1373/clinchem.2011.172940.

28. Bealer JF, Colgin M. S100A8/A9: a potential new diagnostic aid for acute appendicitis. Acad Emerg Med. 2010 Mar;17(3):333-6. DOI: 10.1111/j.1553-2712.2010.00663.x.

29. Kienhorst LB, van Lochem E, Kievit W, et al. Gout Is a Chronic Inflammatory Disease in Which High Levels of Interleukin-8 (CXCL8), Myeloid-Related Protein 8/Myeloid-Related Protein 14 Complex, and an Altered Proteome Are Associated With Diabetes Mellitus and Cardiovascular Disease. Arthritis Rheumatol. 2015 Dec;67(12):3303-13. doi: 10.1002/art.39318.

30. tients. Cancer Lett 2016;374(2):315—23. DOI: 10.1016/j.canlet.2016.02.021. PMID: 26902425.

3. Raif A., Marshall G.M., Bell J.L. et al. The estrogen-responsive B box protein (EBBP) restores retinoid sensitivity in retinoid-resistant cancer cells via effects on histone acetylation. Cancer Lett 2009;277(1):82-90. DOI: 10.1016/j.can-let.2008.11.030. PMID: 19147277.

4. Bell J.L., Malyukova A., Holien J.K. et al. TRIM16 acts as an E3 ubiquitin ligase and can heterodimerize with other TRIM family members. PLoS One 2012;7(5):37470. DOI: 10.1371/journal.pone.0037470. PMID: 22629402.

5. Chauhan S., Kumar S., Jain A. et al. TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct au-tophagy in endomembrane damage homeostasis. Dev Cell 2016;39(1):13—27. DOI: 10.1016/j.devcel.2016.08.003. PMID: 27693506.

6. Tan H., Liu Z., Qi J., Chu G. Tripartite motif 16 inhibits the migration and invasion in ovarian cancer cells. Oncol Res 2017;25(4):551—8. DOI: 10.3727/096504016X14758370595285. PMID: 27737724.

7. Cheung B.B., Koach J., Tan O. et al. The retinoid signalling molecule, TRIM16, is repressed during squamous cell carcinoma skin carcinogenesis in vivo and reduces skin cancer cell migration in vitro. J Pathol 2012;226(3):451—62. DOI: 10.1002/path.2986. PMID: 22009481.

8. Sutton S.K., Carter D.R., Kim P. et al. A novel compound which sensitizes BRAF wild-type melanoma cells to vemurafenib in a TRIM16-dependent manner. Onco-target.2016;7(32):52166-78. DOI: 10.18632/oncotarget.10700. PMID: 27447557.

9. Kimsa M.W., Strzalka-Mrozik B., Kimsa M.C. et al. Differential expression of tripartite motif-containing family in normal human dermal fibroblasts in response to porcine endogenous retrovirus infection. Folia Biol (Praha) 2014;60(3):144— 51. PMID: 25056437.

10. Marshall G.M., Bell J.L., Koach J. et al. TRIM16 acts as a tumour suppressor by inhibitory effects on cytoplasmic vimentin and nuclearE2F1 in neuroblastoma cells. Oncogene 2010;29(46):6172-83. DOI: 10.1038/onc.2010.340. PMID: 20729920.

11. Huo X., Li S., Shi T. et al. Tripartite motif 16 inhibits epithelial-mesenchymal transition and metastasis by down-regulating sonic hedgehog pathway in non-small cell lung cancer cells. Biochem Biophys Res Commun 2015;460(4):1021-8. DOI: 10.1016/j.bbrc.2015.03.144. PMID: 25843803.

12. Li L., Dong L., Qu X. et al. Tripartite motif 16 inhibits hepatocellular carcinoma cell migration and invasion. Int J Oncol 2016;48(4):1639—49. DOI: 10.3892/ijo.2016.3398. PMID: 26892350.

13. Kim P.Y., Rahmanto A.S., Tan O. et al. TRIM16 overexpression induces apoptosis through activation of caspase-2 in cancer cells. Apoptosis 2013;18(5):639—51. DOI: 10.1007/s10495-013-0813-y. PMID: 23404198.

14. Radogna F., Dicato M., Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol 2015;94(1):1—11. DOI: 10.1016/j.bcp.2014.12.018. PMID: 25562745.

15. Kondakova I.V., Spirina L.V., Koval V.D. et al. Chymotrypsin-like activity and subunit composition of proteasomes in human cancers. Mol Biol 2014;48(3):444— 51. PMID: 25831894.

16. Yao J., Xu T., Tian T. et al. Tripartite motif 16 suppresses breast cancer stem cell properties through regulation of Gli-1 degradation via the ubiquitin-proteasome pathway. Oncol Rep 2016;35(2):1204—12. DOI: 10.3892/or.2015.4437. PMID: 26718507.

17. Liu H.L.C., Golder-Novoselsky E., Seto Marian H. et al. The Novel Estrogen-Responsive B Box Protein (EBBP) Gene Is Tamoxifen Regulated in Cells Expressing an Estrogen Receptor DNA-Binding Domain Mutant. Mol Endocrinol 1998;12(11):1733—48. DOI: 10.1210/mend.12.11.0193. PMID: 9817599.

18. Shashova E.E., Lyupina Yu.V., Glushchen-ko S.A,. et al. Proteasome functioning in breast cancer: connection with clinical-pathological factors. PLoS One 2014;9(10):109933. DOI: 10.1371/journal.pone.0109933. PMID: 25329802.

19. Minchenko D.O., Riabovo O.O., Ratush-na O.O. et al. Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: effect of IRE1 inhibition. Endocr Regul 2017;51(1):8—19. DOI: 10.1515/enr-2017-0002. PMID: 28222026.

20. Cheung B.B., Bell J., Raif A. et al. The estrogen-responsive B box protein is a novel regulator of the retinoid signal. J Bio Chem 2006:281(26):18246—56. DOI: 10.1074/jbc.M600879200. PMID: 16636064.

21. Qi L., Lu Z., Sun Y.H. et al. TRIM16 suppresses the progression of prostate tumors by inhibiting the Snail signaling pathway. Int J Mol Med 2016;38(6):1734—42. DOI: 10.3892/ijmm.2016.2774. PMID: 27748839.

22. Spirina L.V., Gorbunov A.K., Chigev-skaya S.Y. et al. Transcription factor Brn-3a mRNA in cancers, relationship with AR, ER receptors and AKT/m-TOR pathway components. AIP Conference Proceedings, 2017;1882:020071.

23. Spirina L.V., Kondakova I.V., Choinzo-nov E.L. et al. Activity and subunit composition of proteasomes in head and cervical squamous cell carcinomas. Bull Exp Biol Med 2010;149(1):82—5. PMID: 21113465.

24. Munding C., Keller M., Niklaus G. et al. The estrogen-responsive B box protein: a novel enhancer of interleukin-1beta secretion. Cell Death Differ 2006;13(11):1938—49. DOI: 10.1038/sj.cdd.4401896. PMID: 16575408.

25. Sutton S.K., Koach J., Tan O. et al. TRIM16 inhibits proliferation and migration through regulation of interferon beta 1 in melanoma cells. Oncotarget 2014;5(20):10127—39. DOI: 10.18632/oncotarget.2466. PMID: 25333256.

26. Wang N., Zhang T. Down-regulation of microRNA-135 promotes sensitivity of non-small cell lung cancer to gefitinib y targeting TRIM16. Oncol Res 2018;26(7):1005—14. DOI: 10.3727/096504017X15144755633680. PMID: 29295721.

27. Galluzzi L., Vitale I., Aaronson S.A. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018;25(3):486 — 541. DOI: 10.1038/s41418-017-0012-4. PMID: 29362479.

Роль геномной нестабильности и экспрессии генной сети белка р53 в процессах онкогенеза в 1–2-м поколении детей, проживающих на радиационно загрязненных территориях | Балева

1. Балева Л.С., Сипягина А.Е., Карахан Н.М. Состояние здоровья детского населения России, подвергшегося радиационному воздействию вследствие аварии на ЧАЭС. Итоги 29-летнего наблюдения Детского научно-практического центра противорадиационной защиты. Рос вестн перинатол и педиатр 2015; (4): 6–10. [Baleva L.S., Sipyagina A.E., Karakhan N.M. The state of health of children population of Russia affected by radioactive contamination following the accident at the Chernobyl nuclear power plant. The results of the 29-year observational study of Children’s scientific-practical center of antiradiation protection. Ros vestn perinatol i pediatr 2015; (4): 6–10. (in Russ)]

2. Балева Л.C., Кузьмина Т.Б., Сипягина А.Е., Засимова И.В. Состояние здоровья детей, облученных внутриутробно. Здоровье детей и радиация: актуальные проблемы и решения. Под ред. Балевой JI.C., Царегородцева А.Д. М: Медиа Сфера 2001; 76–79. [Baleva L.S., Sipyagina A.E., Zasimova I.V. State of health of children, radiation-exposed antenatal. Health of children and radiation: issues of the day and decisions. L.S. Baleva, A.D.Tsaregorodtsev (eds). Мoscow: Media Sfera 2001; 76–79. (in Russ)]

3. Сипягина А.Е. Радиочувствительность к малым дозам ионизирующего излучения у детей как основа развития соматических заболеваний: Автореф. дис… докт. мед. наук. М 2003; 47. [Sipyagina A.E. Radio sensitivity to small doses of ionizing radiation at children as a basis of development of somatic diseases: Avtoref. dis… dokt. med. nauk. Мoscow 2003; 47. (in Russ)]

4. Шевченко В.А. Современные проблемы оценки генетического риска облучения человека. Радиационная биология. Радиоэкология. 2000; 40: (5): 630–639. [Shevchenko V.A. Modern problems of assessment of the genetic risk of human exposure. Radiatsionnaya biologiya. Radioekologiya 2000; 40: (5): 630–639. (in Russ)]

5. Воробцова И.В. До и после Чернобыльской аварии (воспоминания, исследования, гипотезы). Радиационная биология. Радиоэкология 2016; 56: (3): 231–236. [Vorobtcova I.V. Before and after the Chernobyl accident (memories, research, hypothesis). Radiatsionnaya biologiya. Radioekologiya 2006; 46: (4): 466–474. (in Russ)]

6. Бондаренко Н.А. Состояние здоровья детей, облученных внутриутробно в различные сроки после аварии на Чернобыльской АЭС, проживающих на территории, подвергшейся воздействию радионуклидов, и способы снижения негативных последствий радиационного воздействия: Автореф. дис… канд. мед. наук. М 2005; 25. [Bondarenko N.A. A state of health of the children irradiated inutero in various terms after the Chernobyl accident, living in the territory which was affected by radionuclides and ways of decrease in negative consequences of radiation effects. Avtoref. diss… kand. med. nauk. Мoscow 2005; 25. (in Russ)]

7. Яковлева И.Н., Сусков И.И., Балева Л.С. и др. Цитогенетические нарушения у лиц, подвергшихся воздействию радиойода в детском возрасте в результате аварии на Чернобыльской АЭС. Детская онкология 2005; (3): 46–55. [Yakovlena I.N., Suskov I.I., Baleva L.S. et.al. Cytogenetic disorders at the persons which were affected by radio iodine at children’s age as a result of the Chernobyl accident. Detskaya onkologiya 2005; (3): 46–55. (in Russ)]

8. Сусков И.И., Кузьмина Н.С., Сускова В.С., Балева Л.С., Сипягина А.Е. Проблема индуцированной геномной нестабильности как основы повышенной заболеваемости у детей, подвергающихся низкоинтенсивному воздействию радиации в малых дозах. Радиационная биология. Радиоэкология. 2006; 3: 46: (2): 167–177. [Suskov I.I., Kuzmina N.S., Suskova. V.S., Baleva L.S., Sipyagina A.E. Problem of the induced genomic instability as a basis of the increased incidence at the children who are exposed to lowintensive influence of radiation in small doses. Radiatsionnaya biologiya. Radioekologiya 2006; 3: 46: (2): 167–177. (in Russ)]

9. Балева Л.С., Сипягина А.Е., Яковлева И.Н., Карахан Н.М., Егорова Н.И. Иммунологические особенности нарушений у детей, проживающих в регионах с различным уровнем радионуклидного загрязнения после аварии на Чернобыльской АЭС. Рос вести перинатол педиатр 2015; (3): 85–89. [Baleva L.S., Sipyagina А.Е., Yakovleva I.N., Karakhan N.M., Egorova N.I. Immunological features of violations at the children living in regions with various level of radio nuclide pollution after Chernobyl accident. Ros vestn perinatol pediatr 2015; (3): 85–89. (in Russ)]

10. Корсаков А.В., Трошин В.П., Михалев В.П., Жилин А.В., Жилина О.В., Воробьева Д.А., Короткова Н.С. Сравнительная оценка частоты цитогенетических нарушений в буккальном эпителии детей на экологически неблагополучных территориях Брянской области. Токсикологический вестник 2012; (1): 29–34. [Korsakov A.V., Troshin V.P., Mikhalev V.P., Zhilin A.V., Zhilina O.V., Vorob’yeva D.A., Korotkova N.S. Comparative evaluation of the frequency of cytogenetic damage in the buccal epithelium of children in ecologically unfavorable areas of the Bryansk region. Toksikologicheskij vestnik 2012; (1): 29–34. (in Russ)]

11. Балева Л.С., Номура Т., Сипягина А.Е., Карахан Н.М., Якушева Е.Н., Егорова Н.И. Цитогенетические эффекты и возможности их трансгенерационной передачи в поколениях лиц, проживающих в регионах радионуклидного загрязнения после аварии на Чернобыльской АЭС. Рос вести перинатол педиатр 2016. 61: 3.87–95 [Baleva L.S., Nomura T., Sipyagina A.Ye., Karakhan N.M., Yakusheva Ye.N., Yegorova N.I. Cytogenetic effects and the possibility of transgenerational transmission in generations of persons residing in the regions of radioactive contamination after the Chernobyl accident. Ros vestn perinatol pediatr 2016; 61: (3): 87–95 (in Russ)]

12. Бродский В.Я., Урываева И.В. Клеточная полиплоидия. Пролиферация и дифференцировка. М: Наука 1981; 237. [Brodskiy V.Ya., Uryvayeva I.V. Cellular poliploidiya. Proliferation and differentiation. Moscow: Nauka 1981; 237. (in Russ)]

13. Колюбаева С.Н. Хромосомные аберрации, микроядра и апоптоз в лимфоцитах при радиационных воздействиях и других патологических состояниях. Автореф. дисс… докт. мед. наук. Обнинск 2010; 34. [Koliubaeva S N. Chromosomal aberrations, micronuclei and apoptosis in lymphocytes in radiation exposures and other pathological conditions. Avtoref. dis… dokt. med. nauk. Obninsk 2010; 34. (in Russ)]

14. Воробцова И.В. Трансгенерационная передача радиационно-индуцированной нестабильности генома. Радиационная биология. Радиоэкология 2016; 46: (4): 441– 446. [Vorobtcova I.V. Transgenerational transmission of radiationinduced genomic instability. Radiatsionnaya biologiya. Radioekologiya 2006; 46: (4): 466–474. (in Russ)]

15. Сусков И.И., Агаджанян А.В., Кузьмина Н.С., Елисова Т.В., Иофа Э.Л., Нилова И.Н. и др. Проблема трансгенерационного феномена геномной нестабильности у больных детей разных возрастных групп после аварии на ЧАЭС. Радиационная биология. Радиоэкология 2006; 46: (4): 466–474. [Suskov I.I., Agadzhanian A.V., Kuzmina N.S., Elisova T.V., Iofa E.L., Nilova I.N. et al. The problem of transgenerational phenomenon of genomic instability in patients of different age groups of children after the Chernobyl accident. Radiatsionnaya biologiya. Radioekologiya 2006; 46: (4): 466–474. (in Russ)]

16. Poletto M., Legrand A.J., Fletcher S.C., Dianov G.L. р53 coordinates base excision repair to prevent genomic instability. Nucleic Acids Res 2016; 44: (7): 3165–3175.

17. Беляева Н.Н., Сычева Л.П., Журков В.С., Шамарин А.А. и др. Оценка цитологического и цитогенетического статуса слизистых оболочек полости носа и рта у человека. Методические рекомендации М 2005; 37. [Belyayeva N.N., Sycheva L.P., Zhurkov V.S., Shamarin A.A. et al. Assessment of the cytologic and cytogenetic status of mucous membranes of a cavity of a nose and mouth at the person. Methodical recommendations. Moscow 2005; 37. (in Russ)]

18. Cardozo R.S., Takahashi-Hyodo S., Peitl P. Jr., Ghilardi-Neto T., Sakamoto-Hojo E.T. Evaluation of chromosomal aberrations, micronuclei and sister chromatid exchanges in hospital workers chronically exposed to ionizing radiation. Teratog Carcinog Mutagen 2001; (21): 431–439.

19. Нерсесян А.К., Арутюнян Р.М., Вартазарян Н.С. и др. Цитогенетические нарушения в эксфолиативных клетках онкогинекологических больных. В сб. тез. докл. II Съезда Вавиловского общества генетиков и селекционеров. Санкт-Петербург, 2000; 2: 202. [Nersesyan A.K., Arutyunyan R.M., Vartazaryan N.S. et al. Cytogenetic disorders in the exfoliative cells at the oncological patients. In: Theses of reports of the II Congress of Vavilovsky society of geneticists and selectors. St. Petersburg, 2000; 2: 202. (in Russ)]

20. Okamura M., Watanabe T., Kashida Y. et al. Possible mechanisms underlying the testicular toxicity of oxfendazole in rats. Toxicol Pathol 2004; 32: (1): 1–8.

21. Wang L.B., Zheng S., Zhang S.Z., Peng J.P., Ye F., Fang S.C., Wu J.M. Expression of ST 13 in colorectal cancer and adjacent normal tissues. World J Gastroenterol 2005; 11: (3): 336–339.

22. Hedau S., Batra M., Singh U.R., Bharti A.C., Ray A., Das B.C. Expression of BRCA1 and BRCA2 proteins and their correlation with clinical staging in breast cancer. J Cancer Res Ther 2015; 11: l: 158. DOI: 10.4103/0973-1482.140985.

23. Lin Y., Ma W., Benchimol S. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nature Genetics 2000; 26: l: 122–127.

24. Tinfel A., Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004; 304: (5672): 843–846.

Гинцбург сообщил о роли белка в формировании антител к коронавирусу :: Общество :: РБК

Недостаточное количество белка в употребляемых человеком продуктах может негативно сказаться на выработке антител к коронавирусу, в частности, после вакцинации. Об этом заявил директор разработавшего вакцину «Спутник V» Центра имени Н.Ф. Гамалеи Александр Гинцбург, передает ТАСС.

«Количество белковой пищи (количество белка) очень влияет на выработку антител, потому что процесс выработки антител энергетически затратный», — рассказал Гинцбург.

По его словам, людям, которые сделали прививку от коронавируса, стоит сделать упор на потребление качественного белка. Он добавил, что в целом количество потребляемой белковой пищи гражданами — это показатель того, насколько благополучна страна и насколько у населения хороший популяционный иммунитет.

Мишустин взял на память флакон с вакциной против COVID и пошутил о цене

В то же время Гинцбург предупредил, что стресс и большое количество потребляемого алкоголя также могут негативно повлиять на выработку антител. «Все стрессовые состояния очень здорово подавляют антитела», — отметил Гинцбург.

Белки, связывающие тиреоидные гормоны и их физиологическая роль | Свиридов

Стероидные и тиреоидные гормоны окалывают регуляторное действие на целый комплекс физиологических процессов, составляющих основу нормального развития и функционирования организма. В русле крови человека от 96 до 99,9% общих масс кортизола, прогестерона, тироксина (Т- и трийодтиронина (Т3) циркулируют в виде комплексов с гормонсвязывающими транспортными белками (53]. Гипотеза «свободных гормонов» [68, 70] отводит этим транспортным белкам пассивную функцию поддержания стационарного пула биологически активных несвязанных гормонов за счет быстрой диссоциации комплексов в ответ на потребности тканей-мишеней. Исследования последних лет выявили активную роль транспортных белков и их рецепторов на поверхности клеточных мембран во взаимодействии стероидных и тиреоидных гормонов с компетентными тканями.

Структурные аспекты биологической активности комплексов кортикостероидсвязывающего и сексстероидсвязывающего глобулинов с природными лигандами подробно изложены в обзорной статье [76]. Настоящий обзор литературы посвящен описанию физико-химических свойств и биомедицинских характеристик многокомпонентной системы белков, связывающих тиреоидные гормоны в плазме крови человека. Особое внимание уделено рассмотрению физиологического значения этих белков в рамках гипотезы свободных гормонов и в свете их недавно обнаруженных специфических транспортных функций.

  1. Гипотеза: свободных горооиов о роли Т4

связывающих Осикло оиааоы чсилвска

Содержание не связанных с белками тиреоидных гормонов в сыворотке человека не превышает 0,4% от их общей концентрации. Однако тиреоидный статус человека в норме и при заболеваниях, а также механизмы многих физиологических процессов с участием Т, и Т, можно объяснить биологической активностью свободных гормонов и количественно оценить путем определения их концентрации. Гипотеза о свободных гормонах, которая была выдвинута еще в 50-х годах [68], получила затем экспериментальное и теоретическое развитие, а недавно была представлена в виде физиологически обоснованной математической модели [53].

Рассмотрим, придерживаясь сложившейся в этой области терминологии, как гипотеза свободных гормонов в свете накопленных за длительный период экспериментальных данных определяет (физиологическое значение транспортных белков плазмы [53, 68, 70].

  1. Резервная функция. Тироксинсвязывающис белки обеспечивают накопление и хранение тиреоидных гормонов вне щитовидной железы.
  2. Буферная функция.Ткани защищены от неконтролируемого избыточного поступления гормона и захватывают его из постоянно возобновляемого свободного пула в соответствии с метаболической потребностью.
  3. Высвобождающая функция. Связана со второй функцией и основана на том, что кинетические характеристики обратимого гормон-белкового взаимодействия обеспечивают за счет быстрой диссоциации комплексов постоянное возобновление функции свободных гормонов.

1 Автор выражает благодарность д-ру Jacob Robbins (отдел генетики и биохимии, Национальный институт здоровья США) за методическую помощь в подготовке этого обзора.

Резервная функция вносит существенный вклад в тиреоидный гомеостаз, который заключается в поддержании постоянства поступления тиреоидного гормона в ткани и обеспечивает стационарный характер гормонального действия. Биохимическим индикатором резервной функции служит отношение средней концентрации общего Т, (100 нМ) к средней концентрации свободного Т- (30 пМ)в сыворотке. При отсутствии высокоаффинного Т—связывающего глобулина (ТСГ) в сыворотке это отношение уменьшается более чем в 3 раза, тогда как удаление среднеаффинного Т—связывающего преальбумина (ТСПА, транстиретин) или низкоаффинного альбумина дает лишь незначительный эффект. Значит, ТСГ сыворотки является главным периферическим запасающим белком для Т-, секретированного щитовидной железой. Соответствующий биохимический индекс для Т3 (2 нМ/8 пМ) мал и может обсуждаться в связи с механизмом доставки гормона тканям, а не с его резервированием в сыворотке. Существенный вклад в понимание важности резервной функции Т—Связз1вающих белков внесли данные о том, что транспортные белки обеспечивают равномерное распределение поступившего тиреоидного гормона по всем клеткам органа [51, 53]. Хотя альбумин в принципе сам способен выполнить эту роль, действие ТСГ может быть более эффективным из-за меньшей чувствительности к физиологическим вариациям содержания жирных кислот [53].

Эффективность выполнения транспортным белком буферной функции зависит от величины К4 его комплекса с тиреоидным гормоном, которая должна быть одного порядка с концентрацией свободного гормона в сыворотке. Сравнение значений концентрации свободного Т- (3,4 -10-11 М) и Ка ТСГ (10_10 М) показывает, что, хотя ТСГ и не самый оптимальный буфер, но все же более подходящий для этой роли, чем остальные гораздо менее аффинные Т—связывающие белки. Физиологическое значение буферной функции ТСГ выведено, в частности, из наблюдений за больными с наследственным отсутствием ТСГ. Эти больные имели повышенные концентрации тиреоглобулина в сыворотке вследствие ответной реакции щитовидной железы на увеличенную секрецию тиреотропина из-за больших флюктуаций содержания свободного Т- в сыворотке, лишенной ТСГ и обладающей пониженной буферной емкостью [70].

Физиологическая роль и механизм проявления гормонвысво- бождающей функции ТСГ явились предметом дискуссии, что нашло отражение в ряде противоречивых публикаций [32, 52, 55, 56]. W.Pardridge и соавт. [55, 56], основываясь на результатах экспериментов по перфузии органов in vivo, сделали вывод, что Т-, связанный с ТСГ, поступает только в некоторые органы, например печень, и недоступен для других, в частности для мозга, тогда как комплекс Т- с альбумином является главным источником гормона для всех тканей. Высвобождение тиреоидного гормона происходит внутри капилляров из-за резкого снижения гормон-белкового сродства под действием ингибирующих факторов [55]. Другие авторы [32, 52, 70], исходя из теоретических расчетов и собственных экспериментальных данных, показали, что скорость диссоциации комплекса и количество высвобождающегося гормона в равновесных условиях достаточны для удовлетворения потребностей любой ткани, т.е. избирательная доставка гормона в ткань за счет усиленной диссоциации в специфических условиях капиллярного транзита не может играть определяющую роль.

Трудно усомниться в фундаментальном положении гипотезы активных свободных гормонов о том, что связанные в системе транспортных белков Т- и Т3 могут переходить по законам термодинамики в свободный пул и следовать далее по пути метаболизма, включающему взаимодействие со своими мембранными рецепторами. Однако эта гипотеза оставляет открытым во-

Таблица i Многокомпонентная система белков, связывающих тиреоидные гормоны в плазме человека

Белок

Концентрация в плазме1, мг/л

Молекулярная масса, кД

К.-ит5, м-‘

Ссылка

для Т4

для Tj

ТСПА

250

53

700“

100“

169.70]

Альбумин

42 000

66

5“

1“

158,70]

ТСГ

15

54

100 000

5 000

169.701

АпоА-1

1 500

28

750

-7

[17,71]

АпоА-И

350

17,5

-10

[22,71]

AnoA-IV

18

46

-10

[22,71|

АлоВ-100

1 000

550

25

[18,711

АпоС-1

50

6,6

-10

117,711

АпоС-П

40

8,8

-10

[17,7Ц

АпоС-Ш

130

8,8

-10

117,71]

АпоЕ

45

34

-10

[22,711

IgA

2 100

160

14

18.61]

IgG

12 500

150

20

[8,611

IgM

1 250

950

1 100

70

18.61]

* Даны средние значения из диапазонов, приведенных в литературе |61, 70, 71|.

“ Равновесный параметр для первого высокоаффинного центра связывания.

прос о специфических функциях транспортных белков, присутствующих во внеклеточных жидкостях , в процессах взаимодействия тиреоидных гормонов с компетентными клетками. Дело в том, что данная гипотеза принимает во внимание главным образом кинетические и термодинамические аспекты гормон-бел- ковых взаимодействий, определяемые микроструктурой активных центров, оставляя на втором плане специфические физико-химические свойства макромолекулы в целом и ее характерные структурные элементы. Поэтому в следующем разделе нашей статьи перед тем, кай рассмотреть данные литературы об активной роли некоторых транспортных белков во взаимодействии тиреоидных гормонов с клеткой, мы остановимся на обсуждении макромолекулярных свойств отдельных компонентов системы Т4-связывающих белков плазмы.

  1. Свойства и специфические транспортные функции многокомпонентной системы бслкоо, тоязыонющех тетсоедныс оор- мосы о елнзмс еслооскн

Долгое время считали, что плазма крови человека содержит только три белка, взаимодействующих с тиреоидными гормонами: ТСГ, ТСПА и альбумин [68, 69]. В последнее время обнаружено новое свойство известных белков — аполипопротеинов и нормальных иммуноглобулинов плазмы — способность специфически связывать тиреоидные гормоны и регулировать их поступление в ткани-мишени [4, 6, 8, 19, 22]. Выявлена также активная роль “классических” Т4-связывающих белков во взаимодействии тиреоидных гормонов с клеткой [1, 30, 41, 51]. Таким образом, в настоящее время можно говорить о системе транспортных белков плазмы, компоненты которой связаны между собой и тиреоидными гормонами общим термодинамическим соотношением и в то же время выполняют индивидуальные функции по направленной доставке одного из двух гормонов в специфические ткани.

Подвижность компонентов системы Т4-связывающих белков сыворотки человека при электрофорезе в полиакриламидном геле уменьшается в следующем ряду: ТСПА, альбумин, ТСГ, липопротеины, иммуноглобулины. Применение элекрофоретической техники высокого разрешения позволяет провести анализ распределения связанных \ треоидных гормонов в этом ряду и сделать полезные для медицинской диагностики выводы о содержании и биологической активности как отдельных транспортных белков, так и системы в целом. Мы же используем указанный порядок при описании свойств компонентов системы Т — связывающих белков сыворотки человека, чтобы избежать произвольного разделения этих белков на важные и второстепенные поскольку их биологически обоснованная иерархия будет создана, судя по темпам исследований только в ближайшем будущем. В табл. 1 приведены основные характеристики системы транспорта тиреоидных гормонов в плазме человека.

II.1. ТСПА

ТСПА имеет мол. м—53 кД и является негликозилированным тетрамером четырех идентичных субъединиц, каждая из которых состоит из 127 аминокислотных остатков [46].

Высокоочищенный ТСПА доступен в больших количествах благодаря разработке эффективных способов его выделения традиционными методами белковой химии [14] и хроматографией по сродству к тиолсефарозе и иммобилизованному ретинолсвязывающему белку [34]. Однако из-за особенностей строения своего активного центра ТСПА практически не взаимодействует с биоспецифическими сорбентами, содержащими иммобилизованный тиреоидный гормон [6, 37].

Аминокислотная последовательность ТСПА, определенная прямым секвенированием белка [46], полностью соответствует последовательности нуклеотидов в клонированной кДНК для ТСПА [50]. Кристаллографические исследования белка при высоком разрешении (1, 8 А) дали исчерпывающую информацию о структурах высокого порядка, в частности о необычно большом вкладе Р-структуры, наличии короткого а-спирального участка и о пространственной организации Т4-связывающих центров [23, 24]. ТСПА — очень стабильный белок: по данным спектроскопии ‘Н-ЯМР [66] его вторичная и третичная структуры устойчивы даже при 80°С.

ТСПА имеет два одинаковых по строению [23], но различающихся по сродству и емкости центра связывания тиреоидных гормонов с К-7-10 7 и 710s M_1 (для Т4), 1 ТО7 и 6 -10s М_1 (для Т3) при pH 7,4 и 37°С [70]. Взаимодействие Т4или Т3 с одним из центров вызывает отрицательную кооперативность связывания по другому центру, и поэтому почти все молекулы ТСПА несут только по одной молекуле гормона [69]. Время полужизни комплекса ТСПА с Т4и Т3 составляет 7,4 и1,0 с соответственно [70]. Молекула ТСПА содержит на своей поверхности четыре идентичных, независимых от Т, центра взаимодействия с ретинолсвязывающим белком (Ke~106— 107 м_|), из которых in vivo занят только один [42].

Соединения, существенно отличающиеся по структуре от йод- тиронинов, также способны взаимодействовать с Т4-ввязьшаю- щим центром ТСПА. Среди них наиболее изучены барбитал, 8- анилин-1-нафталинсульфокислота, 2,4-динитрофенол, салицилаты и пенициллин [68, 70]. Недавно [54] было проведено системное исследование различных классов химических соединений, обладающих лекарственными свойствами, которые конкурируют со [1|-Т4 за связывание с ТСПА и другим высокоаффинным транспортным белком ТСГ. Показано, что эти два белка существенно различаются по сродству к изученным лекарствам. Так, с ТСПА особенно сильно взаимодействуют соединения ряда антраниловой кислоты (потенциал связывания 175—20% относительно Т4), причем флуфенамовая кислота связывается активнее самого Т4. В отличие от связывания с ТСГ комплексообразование ТСПА с Т4в существенной степени ингибируется салицилатом и ацетилсалициловой кислотой и не подвержено влиянию дифенилгидантоина [54].

Биосинтез ТСПА происходит главным образом в печени [25], центральной нервной системе [29] и в глазу [49] млекопитающих. Время полужизни этого белка в системе кровообращения человека составляет около 2 сут. Концентрация ТСПА в нормальной сыворотке варьирует от 100 до 400 мг/л. Регуляторное действие на биосинтез ТСПА оказывают половые и анаболические стероиды, половые стероидные гормоны и наркотические вещества [69]. Концентрации ТСПА и ТСГ в сыворотке изменяются под действием этих соединений в противоположных направлениях. Эстрогены, в частности, при беременности вызывают умеренное снижение уровня ТСПА, тогда как андрогены стимулируют увеличение содержания этого белка. Пониженные концентрации ТСПА были выявлены в сыворотке людей, принимающих героин и метадон [69]. Интересной с медицинской точки зрения характеристикой метаболизма ТСПА является снижение его концентрации при некоторых нетиреоидных заболеваниях, травмах, реакции острой фазы и недостатке питания [72]. Повышенное содержание ТСПА в сыворотке наблюдается при некоторых формах рака, в частности при карциноме поджелудочной железы [62].

Относительно небольшой по размерам ген ТСПА (7300 пар оснований) состоит из четырех эксонов и отличается высокой эволюционной стабильностью. Так, выявлено 90% гомологичных структур в ТСПА человека и крысы [36]. Некоторые авторы [45] на основании данных о структурной гомологии относят ТСПА к семейству гастроинтестинальных пептидов, к которому принадлежат глюкагон, секретин, вазоактивный пептид кишечника, ингибиторный пептид желудка и глицентин.

Неизвестны генетические нарушения, проявляющиеся при полном отсутствии ТСПА у человека. Вместе с тем обнаружены шесть генетических вариантов ТСПА с заменами одного аминокислотного остатка в полипептидной цепи. Один из вариантов имеет повышенное сродство к Т4, четыре других варианта у больных с наследственной амилоидотической полинейропатией и молекулярный вариант ТСПА при системном сенильном амилоидозе обладают более низким или нормальным сродством к Т4 [13, 64, 72].

Микрогетерогенность ТСПА, не связанная с генетическими факторами и посттрансляционной модификацией, обнаружена при изоэлектрическом фокусировании сыворотки [59]. Два химических агента, не относящихся к аминокислотам, и компоненты глутатиона способны ассоциировать с ТСПА, обусловливая микрогстерогенность белка и изменение сродства кТ4 [60]. Этим же методом в присутствии 8 М мочевины выявлены два компонента в пуле высокоочищенного ТСПА, введение которых в русло крови кролика существенно увеличивает обратный ток тиреоидных гормонов из внесосудистого пространства в кровоток. По мнению авторов [48], усиление обмена тиреоидных гормонов под действием экзогенно вводимых связывающих белков может иметь терапевтическое значение при плазмаферезе и гемофильтрации в случаях тяжелого тиреотоксикоза.

В литературе [13] обсуждалась особая функция ТСПА в центральной нервной системе. Предполагалось, что ТСПА переносит связанный тиреоидный гормон в спинномозговую жидкость. Однако позднее на биологической модели in vivo было показано, что ТСПА человека, химически конъюгированный с N-бро- мацетил-[1251 ]-Т4, не проникает из плазмы в спинномозговую жидкость крысы [28]. Тем не менее весьма вероятно, что Т4, поступающий из плазмы в эпителиальные клетки хориоидного сплетения, связывается с синтезированным in situ ТСПА, образовавшийся комплекс секретируется в спинномозговую жидкость и распределяется в мозге [29].

В цикле работ Ш.С.Азимовой и соавт. [1—3] с использованием биологической модели in vivo н очищенных гомологичных ТСПА человека и крысы изучена физиологическая роль комплексов тиреоидных гормонов с ТСПА. Комплекс ТСПА — тиреоидный гормон из сыворотки проникает через плазматическую мембрану в клетки-мишени [1]. В компетентных клетках комплекс локализуется на рибосомах, митохондриях, в липидных каплях и аппарате Гольджи. В клетках, не чувствительных к тиреоидным гормонам, небольшое количество поступившего ТСПА концентрируется- в лизосомах. Исследование транслокации ТСПА в различные субмптохондриальные фракции показало, что белок из цитоплазмы проникает через внешнюю мембрану и локализуется на внутренней мембране и матриксе митохондрий [2]. Найдено также, что ТСПА поступает в клетки печени, мозга и легких, транслоцируется из цитозоля в ядро и акцентируется хроматином, не подвергаясь при этом модификациям, затрагивающим его антигенные детерминанты [3]. На основании результатов сравнительного изучения структур ТСПА и клеточных рецепторов тиреоидных гормонов, а также данных о транслокации через плазматическую мембрану и внутриклеточном транспорте ТСПА сделан вывод о том, что ТСПА представляет собой базовую часть истинного рецептора тиреоидных гормонов.

По мнению авторов [55], механизм проникновения Т4 в орган может состоять либо в диссоциации комплекса под действием неконкурентного ингибитора в микроциркуляции печени, либо во взаимодействии ТСПА со специфическим рецептором на внешней поверхности клеточной мембраны.

С-Divino и G.Schussler [30] показали, что ТСПА, добавленный в разбавленную сыворотку или раствор альбумина человека, усиливает поглощение Т4 в культуре клеток гепатомы НЕр G2 человека. Это побудило авторов [30] изучить возможность прямого взаимодействия ТСПА со специфическими связывающими центрами на поверхности клеток НЕр G2. Найдено, что связывание ТСПА с клетками данной линии зависит от температуры и времени, причем термодинамическое равновесие наступает через 2 ч инкубации. Анализ взаимодействия по методу Скетчарда выявил один класс эквивалентных центров связывания с К„~5 нМ при 4°С и 14 нМ при 37°С. После протеолитического разрушения ТСПА, связанного на поверхности клеточной мембраны, определили, что 88% белка иитернализусгся клеткой. Насыщение связывающих центров ТСПА гормоном усиливало захват и интернализацию белка. Т4 и негормональные лиганды (салицилат и синтетический флавон EMD 21388) стимулировали поглощение нормального ТСПА и его молекулярного варианта с точечной заменой в положении 30 полипептидной цепи клетками астроцитомы и гепатомы [73]. Сделан вывод о том, что взаимодействие между ТСПА и его клеточным рецептором является частью механизма активного транспорта Т4 в клетку и может обусловливать дополнительные метаболические эффекты гормона.

II.2. Альбумин

Альбумин человека состоит из одной негликозилированной полипептидной цепи с мол. м. 66 кД. Известна последовательность 548 аминокислотных остатков этого белка. Из них 48% составляют (-структуру, а 15% образуют а-спиральные участки. Охарактеризованы три главных домена в полипептидной цепи с повторяющимися аминокислотными последовательностями. В русле крови альбумин транспортирует многие низкомолекулярные физиологически активные вещества, в том числе жирные кислоты, аминокислоты, билирубин, ионы металлов, стероиды и йодтиронины. Ген альбумина расположен на длинном плече хромосомы 4. Из 15 эксонов гена два кодируют сигнальный пептид из 18 аминокислотных остатков и пропептад из 6 остатков [58]. Альбумин продуцируется печенью в 25 и 1250 раз более интенсивно, чем соответственно ТСПА и ТСГ. Его концентрация в нормальной сыворотке составляет в среднем 4200 мг/мл, а время полужизни в кровообращении — 13 сут. Содержание альбумина в сыворотке умеренно снижается при циррозе печени, нефрозе, воспалительных реакциях, травмах [70]. В одном [58] из множества обзоров, посвященных альбумину, можно найти полные сведения о его структуре, физико-химических свойствах, молекулярной генетике и метаболизме. Мы же остановимся далее на описании свойств комплексов альбумина с тиреоидными гормонами.

Альбумин содержит один относительно высокоаффинный центр связывания йодтиронинов с Ка 5 46s М~’ (для Т4) и Г ■105 М“‘ (для Т,), а также от 2 до 6 центров низкого сродства с Ко 5 ТО4 М-1 (для Т4) и 5 ТО3 М‘ (для Т3) [70]. Связывание тиреоидных гормонов с альбумином ингибируется жирными кислотами и другими органическими анионами [70], а также ЫаС1 в физиологических концентрациях [77].

В дополнение к “нормальным” центрам связывания Т4 при генетических повреждениях молекулы альбумина обнаружен центр с Ка 7 10е М_‘. Этот аналог в небольших количествах присутствует в нормальной сыворотке, и его концентрация резко повышается при дисальбуминемической гипертироксинемии [42]. При этом заболевании около 25% общего альбумина проявляет повышенное сродство к Т4, что приводит к существенному увеличению количества гормона, переносимого этим транспортным белком [42]. Важное для медицинской диагностики аномальное связывание Ри1]-Т4 с альбумином легко выявляется после ингибирования ТСПА барбиталом и инактивации ТСГ обработкой сыворотки при pH 3,0 [12].

О специфической роли альбумина в транспорте тиреоидных гормонов в ткани сообщалось лишь в нескольких публикациях [47,51, 81]. Было высказано предположение, что альбумин может опосредовать усиленное поглощение связанных с ним йод- тироиинов печенью за счет взаимодействия белка со своим рецептором на гепатоцитах [81]. В другой работе [47] отмечают факт интернализации комплекса Т3—альбумин периферическими лейкоцитами человека. С.Мепбс1 и соавт. [51] в экспериментах на крысах показали, что 4% раствор альбумина человека, не содержащий ТСПА и ТСГ, при введении вместе со [ |г55]-Т, через портальную вену в печень обеспечивает равномерное распределение меченого гормона по всем клеткам органа, тогда как при перфузии печени не связанным с альбумином [ч51]-Т4 весь гормон захватывается перипортальными клетками.

П.3. ТСГ

ТСГ имеет мол. м. 54 кД и в отличие от ТСПА и альбумина является гликопротеином, содержащим 23% сахаров по массе.

Современные эффективные методики выделения и очистки ТСГ основаны на лигацд-аффинной хроматографии [6, 37].-антихимотрипсином (58% гомологии),а,-антитрипсином (53%) и антитромбином III (27%) [35]. Интересно, что к тому же семейству относится и транскортин человека [40], хотя ни ТСГ, ни транскортин не обладают свойствами антипротеаз. Ген ТСГ расположен в средней части длинного плеча хромосомы X между полосами Xq 11 и Xq 23 [79]. Кодирующая область гена ТСГ состоит из 1245 пар оснований, организованных в 4 эксона [35]. Сведения о вторичной структуре ТСГ получены на основании характеристик кругового дихроизма и флюоресцентных свойств белка [38, 74]. ТСГ содержит примерно равные доли а-спирали и [3-структуры. Расчеты термодинамических параметров плавления третичной структуры ТСГ по данным микрокалориметрии показывают, что в ТСГ присутствуют два близких по пространственной организации домена.

Оба тиреоидных гормона и их структурные аналоги связывают по одному центру в молекуле ТСГ. При 37°С и pH 7,4 значения К составляют 1 1010 и 5 -10® М-1 для Т4 и Т3 соответственно [70]. Несмотря на очень высокую энергию связывания, прибл!гжающуюся по порядку к энергии химических реакций, взаимодействие является обратимым. Диссоциация комплексов ТСГ с тиреоидными гормонами протекает достаточно быстро: время полужизни равно 4 и 39 с соответственно для Т, и Т4 [70|. Т4 имеет структуру наиболее предпочтительного лиганда для ТСГ. Тем не менее этот белок способен связывать, хотя и с невысоким сродством, многие соединения, которые имеют лишь частичное структурное сходство с Т4. Так, сообщалось о взаимодействии с Т4-связывающим центром ТСГ лекарственных препаратов 5,5‘-дифенилгидантоина, фенклофенака, диазепама, салицилатов [69]. Кроме того, ТСГ связывает 8-анилин-1-нафталинсульфонат, что используется в исследованиях комплексообразования методами флюоресцентной спектроскопии и для вытеснения Т4 из комплекса с ТСГ при иммуноанализе [70].

ТСГ синтезируется в печени [13]. Его концентрация в нормальной сыворотке составляет 15—30 мг/л. Время полужизни ТСГ в кровообращении 5 дней [63]. Ряд природных и синтетических препаратов способны увеличивать (эстрогены, героин, метадон, 5-фторурацил, перфеназин, клофибрат) или уменьшать (андрогены, глюкокортикоиды, анаболические стероиды) содержание ТСГ в организме человека [69]. Высокие концентрации ТСГ в сыворотке обнаружены при остром вирусном гепатите, хроническом активном гепатите и первичном циррозе печени [72]. Поскольку повышенные концентрации ТСГ были выявлены у 92% больных с гепатоклеточной карциномой, то его можно считать надежным, хотя и неспецифическим, онкомаркером [78]. Скорость продуцирования этого белка снижается как при гипотиреозе, так и при тяжелом тиреотоксикозе. Клиренс замедляется при состояниях с аномально низкими концентрациями тиреоидных гормонов в плазме и усиливается при тиреотоксикозе. Этот сложный эффект тиреоидных гормонов обусловливает значительные колебания концентраций ТСГ в плазме людей с нарушениями функции щитовидной железы [70].

В последнее время интенсивно изучаются генетические варианты ТСГ. На молекулярном уровне установлены три типа альтераций гена ТСГ: делеция одного нуклеотида, замещение одного нуклеотида и замещение двух нуклеотидов [44]. Эти аномалии гена проявляются как наследственное полное отсутствие ТСГ в плазме человека или в виде генетических вариантов с заменами соответственно одного или двух аминокислотных остатков, пониженным сродством к тиреоидным гормонам, измененными зарядовыми свойствами и повышенной термолабильностью [65].

Из девяти описанных в литературе молекулярных вариантов ТСГ три имеют общую замену лейцина на фенилаланин в положении 283 наряду со специфичными для них мутациями. Такая же замена в положении 283 характерна и для ТСГ, обладающего всеми свойствами нативного белка [44]. Это позволяет говорить о полиморфизме ТСГ по кодону 283. Такой полиморфизм ТСГ характерен для всех этнических групп населения [44]. Вместе с тем можно сделать неблагоприятный прогноз о том, что замещение в положении 283 в принципе может быть важным для появления иных специфических мутаций гена ТСГ.

Олигосахаридные цени ответственны за микрогетерогенность ТСГ и в существенной степени определяют скорость выведения этого гликопротеина из кровообращения [13]. В процессе клиренса особенно важны концевые сиаловые кислоты. Десиали- рованный ТСГ с экспонированными остатками галактозы имеет очень высокую скорость клиренса за счет быстрого поглощения гепатоцитов поверхностными рецепторами, способными связывать многие асиалогликопротеины [63].

Особую роль углеводный компонент играет в функционировании ТСГ при беременности. Гиперэстрогенемия, характерная для этого физиологического состояния организма, влияет на углеводную структуру ТСГ, что в свою очередь приводит к уменьшению на 15% скорости клиренса ТСГ [9]. Этим, однако, нельзя объяснить двукратное повышение содержания ТСГ при беременности [69]. По-видимому, как усиленный синтез, так и замедленный клиренс определяют повышенные концентрации этого гликопротеина в сыворотке беременных женщин.

При хроматографии чистого ТСГ из сыворотки ретроплацен- тарной (послеродовой) крови на конканавалин А-сефарозе гликопротеин разделяется на две фракции, одна из которых (ТСГ- 1), составляющая около 10% от общей массы, не взаимодействует с иммобилизованным лектином и элюируется в свободном объеме, а другая адсорбируется на аффинной колонке [10, 75]. Установлено, что ТСГ-1 является характерным для беременности структурным вариантом ТСГ с особым строением углеводного компонента и специфической микрогетерогенной структурой. В то же время ТСГ-1 не отличается от ТСГ нормальной сыворотки по аминокислотному составу, вторичной и третичной структурам полипептидной цепи, а также по строению и свойствам гормонсвязывающего центра. Изучение в модельных системах in vivo клиренса вариантов ТСГ показало, что ТСГ-1 и характерная для беременности высокосиалированная фракция ТСГ [9] выводятся из кровообращения крысы в 1,5—2,5 раза медленнее, чем вариант, соответствующий ТСГ нормальной сыворотки.

Разработана радиоиммунологическая система для количественного определения ТСГ-1 в сыворотке крови человека. Найдено, что в сыворотке крови здоровых доноров доля ТСГ-1 составляет в среднем 1,2% от уровня общего ТСГ, к сроку разрешения от беременности эта величина повышается до 8 % в сыворотке и 9,5% в амниотической жидкости и медленно снижается после родов, достигая через 5 мес значения, характерного для нормы [5]. По данным двух групп авторов [9], при злокачественных новообразованиях различной локализации и нарушениях функции печени доля ТСГ-1 составляет 3—10%.

Таким образом, ТСГ-1 является минорным компонентом плазмы крови человека в норме. Повышение концентрации общего ТСГ, вызываемое различными ненаследственными причинами, сопровождается увеличением доли ТСГ-1. Высказано предположение, что биосинтез структурного варианта ТСГ, содержащего только трехантенные олигосахаридные цепи со специфической микрогетерогенной структурой, представляет собой один из способов физиологической адаптации к увеличению потребности организма в ТСГ. Если возникает необходимость в увеличении концентрации ТСГ в крови, то реакция синтезирующего органа может состоять в избирательном усилении биосинтеза долгоживущего структурного варианта за счет изменения механизмов посттрансляционного гликозилирования полипептидной цепи.

Биологический смысл обсуждавшейся выше структурной гомологии между ТСГ и серпинами рассматривается в работе [57]. Ингибиторы сериновых протеаз в активной форме имеют напряженную (S) конформацию. В этой конформации у а -антитрипсина действию протеазы доступна петля, в которой надлежащим образом сближены остатки активного центра Met-358 и Ser-359. Под действием фермента петля разрывается и молекула антипротеазы претерпевает необратимый переход в расслабленную (R) конформацию, в которой эти два аминокислотных остатка удалены друг от друга. Такой конформационный переход сопровождается существенным увеличением термостабильности макромолекулы. По данным авторов [57], ТСГ и транскортин, имея родственную а.-антитрипсину третичную структуру, расщепляются эластазой нейтрофилов и приобретают повышенную тепловую устойчивость. При этом у транскортина в отличие от ТСГ существенно снижается сродство к лиганду. Таким образом, в случае комплекса транскортина с кортизолом S — R-переход in vivo с участием компетентных лейкоцитов при воспалительной реакции может приводить к высвобождению гормона и обеспечению доставки повышенных количеств глюкокортикоида к месту воспаления. Хотя у ТСГ и не выявлено изменений сродства к лиганду в результате конформационного S— R-персхода, возможность сайтспецифичного ферментативного расщепления этого белка может реализовываться в ходе взаимодействий с клетками-мишенями направленного транспорта тиреоидного гормона.

К.Hashizume и соавт. [41]впервые высказали экспериментально обоснованное предположение о том, что ТСГ выполняет транспортную функцию не только в сыворотке крови, но и на уровне плазматической мембраны клетки. В их работе изучено взаимодействие in vitro между периферическими моноядерными клетками человека и комплексами [12‘1 |-Т4 с интактным и дсси- ащроввнным ТСГ. Найдено, что связанный с белком гормон способен проникать в клетку. Процесс поглощения комплекса клеткой зависит от температуры, времени инкубации и состояния углеводных цепей связывающего белка. Механизм трансмембранного переноса может включать интернализацию тройного комплекса Т, — ТСГ — рецептор ТСГ.

Важной функцией ТСГ при беременности может быть его участие в переносе тиреоидных гормонов из плазмы матери в кровообращение плода [31]. Т, играет ключевую роль в раннем нейрогенезе, и ТСГ может опосредовать гормональную связь между матерью и плодом путем регуляции трансплацентарного переноса Т, [31, 33]. В этой связи особую функцию в фетопла- центарной системе может выполнять характерный для беременности структурный вариант гликопротеина ТСГ-1, которым обогащен общий ТСГ, обнаруженный в амниотической жидкости [5].

  • Аполипопротеины

Аполипопротеины составляют один из самых представительных классов белков плазмы крови человека. Благодаря своей амфифильной структуре эти белки обладают способностью связывать и тем самым обеспечивать солюбилизацию липидов в водном окружении плазмы. В известном обзоре [71] подробно описаны структурно-функциональные свойства и биомедицинское значение аполипопротеинов.

Ранние наблюдения показали, что Т, и Т3 способны ассоциировать с липопротеидными частицами плазмы человека [43]. Позже с помощью аффинной хроматографии плазмы на Т,-сефарозе [11,39] и фотоаффинного ковалентного мечения липопротеинов высокой, низкой и очень низкой плотности (соответственно ЛПВП, ЛПНП и ЛПОНП) [|251]-Т4 [17, 18, 22, 39] было найдено, что апоА-I, апоА-П, anoA-IV, апоВ-100, апоС-1, апоС-П, апоС-Ш и апоЕ являются Т,-связывающими компонентами липопротеидных частиц. На основании результатов кинетических и равновесных экспериментов [7, 17, 18, 39] сделан вывод о том, что связывание тиреоидных гормонов с аполипопротеинами является зависимым от времени, обратимым, насыщаемым и чувствительным к специфическим ингибиторам процессом взаимодействия со структурно обособленным центром в белке, комплементарным лиганду. Число таких центров в макромолекуле варьирует от I в апоА-1 [21] до 3 в апоВ-100 [18, 20]. Из изученных аполипопротеинов только апоА-I и его липидный комплекс апоА-I—ЛПВП проявляют достаточно высокое сродство к гормону (Ка 107 — 108 М_|) [7, 17].

Известно, что многие типы клеток человека имеют поверхностные рецепторы апоВ-100 и апоЕ, участвующие в доставке холестерина в клетку путем связывания и последующей интернализации комплекса ЛПНП — рецептор [71]. Па основе этого механизма был создана гипотеза о физиологической роли комплекса тиреоидного гормона с ЛППП, которая недавно получила экспериментальную проверку [19]. Авторы изучили поглощение [|251]-Т3 и [ШТ, фибробластами кожи человека, выращенными в присутствии обедненной липопротеинами сыворотки. При добавлении в среду фракции ЛПНП, апоВ-100 или апоЕ в концентрациях, достаточных для связывания гормона, но не превышающих емкость клеточного рецептора, наблюдали увеличение на 27—63% начальной скорости поглощения и количества поглощенного Т, (но не Т3) в состоянии равновесия. Этот эффект отсутствовал у клеток с дефицитом рецепторов (наследственная гиперхолестеринемия, низкая экспрессия рецепторов при избытке холестерина в среде). Специфический характер действия ЛПНП и соответствующих аполипопротеинов подтверждался тем фактом, что другие Т,-связывающие белки, наоборот, пропорционально своим концентрациям в среде снижали количество Т,, проникающего в клетку. Авторы [19] предположили, что существуют два пути транспорта Т, в фибробласты. Первый — через центры связывания свободного гормона на клеточной поверхности, второй, дополнительный путь, недоступный для Т3, — через рецепцию комплекса Т, — ЛПНП и интернализацию последнего.

  • Иммуноглобулины

Иммуноглобулины образуют обширное семейство структурно родственных белков, которые состоят из двух пар полипеп- тидных цепей, удерживаемых дисульфидными мостиками и нековалентными связями. Пять таких стандартных четырехцепочных фрагментов, соединенных J-цепыо, присутствуют в IgM. Тяжелые цепи, включающие около 450 аминокислотных остатков, по своему строению разделяются на пять классов, что лежит в основе классификации иммуноглобулинов: IgG, IgA, IgM, IgD и IgE; Кроме того, существуют 4 подкласса IgG и 2 подкласса IgA. Легкие цепи (около 214 остатков) являются общими для всех классов иммуноглобулинов, хотя и могут различаться соотношением типов К и X. В семейство иммуноглобулинов входят также белки, которые не обладают активностью антител. Это миеломные белки, свободные субъединицы иммуноглобулинов и белки Бенс-Джонса. Подробные сведения о структурных, функциональных и генетических характеристиках иммуноглобулинов можно почерпнуть из авторитетного источника [61] и соотнести с излагаемыми ниже гормонсвязывающими свойствами этих гликопротеинов.

Впервые уникальный клинический случай связывания Т, с фракцией иммуноглобулинов сыворотки больного карциномой щитовидной железы был описан J.Robbins и соавт. [67]. В последовавших затем многочисленных наблюдениях и системных исследованиях охарактеризованы приобретенные изменения в системе транспорта тиреоидных гормонов у человека, которые заключаются в появлении аномальных связывающих белков, аутоантител, относящихся к иммуноглобулинам различных классов [16]. Относительное число случаев (частотность) обнаружения аутоантител к тиреоидным гормонам при массовых обследованиях взрослого населения не превышает долей процента, но при тиреоидных заболеваниях такие аутоантитела присутствуют у 5% больных [16].

В ходе работ по изучению “патологического” связывания гормонов щитовидной железы с аномальными белками были полу- чены.отдельные сведения о взаимодействии Т, и Т3 с нормальными иммуноглобулинами человека. Так, при оценке методики детекции анти-Т, (Т3) аутоантител в очищенной фракции иммуноглобулинов нормальной сыворотки отмечалось “неспецифи- чсское” связывание Т, и Т3 с нормальными IgG [27]. При экспериментальной проверке предположения об “иммуноглобулиновой” природе ингибитора связывания тиреоидных гормонов в сыворотке были получены данные, косвенно свидетельствующие о Т,-связывающих свойствах нормального IgM человека [15].

В ходе системного исследования Т4-связывающих белков плазмы человека с помощью нового методического подхода, основанного на использовании лиганд-аффинной хроматографии, было показано, что постоянными компонентами белковой смеси, биоспецифически выделяемой из рстроплацентарной и нормальной сывороток человека с помощью Т,-сефарозы, являются IgG и IgM [6]. Оставалось неясным, являются ли Т-ссвязы- вающие иммуноглобулины аутоантителами, т.е. аномальными белками, которые появляются при достаточно редких патологических состояниях, или же они относятся к нормальным транспортным белкам плазмы.

С целью ответа на этот вопрос изучены кинетические и равновесные характеристики взаимодействия Т, с IgA, IgG, IgM и белками Бенс-Джонса, выделенными в чистом виде из сыворотки крови человека[8]. Найдено, что комплексообразование Т, с иммуноглобулинами является зависимым от времени, обратимым, насыщаемым и чувствительным к специфическим ингибиторам процессом. Необходимым и достаточным для связывания Т, компонентом молекулярной структуры иммуноглобулина является, по-видимому, L-цепь типа К или X. Ковалентное присоединение Н-цепи может резко увеличивать сродство к тиреоидному гормону (ц-цепь в IgM) или изменять чувствительность участка связывания к химическим агентам и pH среды (ц-цепь в IgM, у- цепь в IgG). Экспериментальные данные показывают, что Т,- связывающий IgM не принадлежит к /‘патологическому” типу белков — анти-Т, аутоантителам: зависимость реакции связывания Т, от физико-химических условий среды является типичной для нормальных траспортных белков; частотность обнаружения Т,-связывающего IgM в случайно выбранных индивидуальных пробах сыворотки здоровых людей составляет 100%; комплекс IgM — Т, структурно отличается от комплекса антиген — антитело, так как не способен взаимодействовать с первым компонентом комплемента. Авторы [8] считают, что специфические Т,-связывающие свойства иммуноглобулинов нормальной сыворотки могли долгое время оставаться нераскрытыми из-за недостатков традиционного метода анализа, который не способен обнаружить слабые проявления Т,-связывающей активности этих белков в физиологических жидкостях, содержащих эндогенный ингибитор С1~ и (или) экзогенный ингибитор 8-анм- лин-1-нафталинсульфокислоту.

Особая биологическая роль IgM выявлена в ходе экспериментов in vitro с использованием модельной системы тиреоидный гормон — связывающий белок — плазматическая мембрана микроворсинок сннцитиотрофобласта человека [,]. Важно отметить, что выбранная в качестве объекта исследования ткань формирует поверхность контакта между материнской кровью и плодом, является компетентной в отношении тиреоидных гормонов [11] и содержит поверхностные рецепторы иммуноглобулинов [61). В этой модельной системе очищенные ТСПА, альбумин, апоА-I, ТСГ, IgG и IgM при концентрациях, близких к Kj их комплексов с тиреоидными гормонами, оказывали пропорциональное концентрациям ингибирующее действие на свя-

Таблица 2

Активная роль лиганд-бслковых комплексов в трпспорте тиреоидных гормонов в клетки некоторых тканей

Бел ox

Лиганд

Клстке

Механизм

Ссылка

ТСПА

т„т4

Гепатоциты in vivo НЕр G2 in vitro

Рецепция и интернализация комплекса

11.301

Альбумин

т4

Гепатоциты in vivo

Равномерное распределение лиганда по всем клеткам органа

151,531

ТСГ

т4

Лейкоциты in vitro

Рецепция и интернализация комплекса

141)

АпоВ-100

Т4

Фибробласты in vitro

То же

H9J

IgM

Т,

Плазматические мембраны плациенты in vitro

Увеличение числа Т3-связывающих мест за счет рецепции IgM мембранами

141

зывание [1]-ТЭ или [1]-Т4 с мембранным рецептором тиреоидных гормонов. Зависимость мембранного связывания 1Ц- Т4 от концентрации IgM в системе носила типичный для всех изученных белков характер. В случае Т3 такая зависимость была уникальной для IgM и включала фазу стимулирующего действия IgM (10-11—10~’ М) и фазу ингибирования (10~*—10~’М). В присутствии 30 пМ IgM на 75% увеличивалась концентрация мембранных мест связывания Т3 при снижении Ка в 2,2 раза. В отдельном эксперименте показано [5] , что IgM специфически взаимодействует с двумя типами связывающих центров на плазматических мембранах плаценты с Ка<1)=5,0 -10’ М_|, В =34 фмоль/мг общего мембранного белка и Ка( =2,7 10′ М-1, Вгоах(2)=2,0 пмоль/мг мембранного белка. Авторы [4] считают, что стимулирующий эффект IgM обусловлен увеличением числа Т3— связывающих мест на мембранах микроворсинок за счет образования комплекса IgM с его мембранным рецептором, проявляющего повышенную Т3-связывающую активность.

В табл.2 обобщены специфические транспортные функции Т4-связывающих белков плазмы человека.

Система транспортных белков, обратимо связывающих более 99% общей массы Т4 и Т3 в плазме крови человека, включает ТСПА, альбумин, ТСГ, апоА-I, апоА-Н, anoA-IV, апоВ-100, апоС-I, апоС-П,апоС-Ш, апоЕ, IgM, IgYj и IgA. В этот широкий спектр белков входят и их структурные варианты, отличающиеся элементами химического состава, некоторыми физическими свойствами и особенностями взаимодействия с йодтирони- нами. По величине сродства к тиреоидным гормонам связывающие белки можно условно разделить на три группы: низкоаффинные (альбумин, большинство аполипопротеинов, IgG и IgA; К ~105 —106 М~‘), среднеаффинные (ТСПА и апоА-1; К -10’ — 10* М_|) и высокоаффинные (ТСГ и его варианты; Ка —10’ — 10’° М“’). Существуют эффективные методы выделения и очистки этих белков. Известны строение генов, параметры биосинтеза и клиренса, первичная, вторичная и третичная структуры полипептидных цепей, физические свойства молекул.

Т4-связывающие белки плазмы не обладают генетическим родством, различаются по химическому строению и физическим свойствам и выполняют различные основные или дополнительные биологические функции. Их объединяет участие в термодинамическом равновесии со свободными гормонами и наличие структурно обособленного активного центра, в большей или меньшей степени комплементарного структуре йодтирони- на.

Гипотеза о свободных гормонах объясняет и количественно описывает все клеточные эффекты Т4 и Т3 на основе концентрации несвязанных гормонов в плазме, а связывающим белкам отводит резервную, буферную и гормонвысвобождающую функции. Исследования последн!о< лет выявили активную роль транспортных белков и их клеточных рецепторов в механизмах взаимодействия тиреоидных гормонов с компетентными тканями: комплекс Т4 — ТСГ интернализуется периферическими моноя- дерными клетками, Т3 и Т4, связанные с ТСПА, траислоциру- ются через плазматическую мембрану и распределяются между субклеточными фракциями печени и других органов, апоА-I избирательно усиливает поглощение Т4 фибробластами, a IgM стимулирует связывание Т3 с плазматическими мембранами плаценты.

Понимание фундаментальных основ функционирования многокомпонентной системы Т4-связывающих белков плазмы важно для диагностики заболеваний человека и правильного применения фармакологических средств, которые могут влиять на комплексообразование тиреоидных гормонов с танспортны- ми белками.

Поскольку многие компоненты системы Т4-связывающих белков участвуют в целом ряде хорошо изученных физиологических процессов, казалось бы, не имеющих прямого отношения к метаболизму йодтиронинов, интересно выяснить влияние связанного тиреоидного гормона на эти процессы.

В целом создается впечатление, что каждый отдельный Т4— связывающий белок может выполнять специализированную функцию по доставке одного из двух тиреоидных гормонов в специфическую ткань. Разнообразие транспортных белков и компетентных тканей дает широкий простор исследованиям, результаты которых должны появиться уже в ближайшем будущем.

1. Азимова Ш.С., Умарова Г.Д., Петрова О.С. и др. // Биохимия. — 1984. — Т. 49, № 8. — С. 1350 — 1356.

2. Азимова Ш.С., Умарова Г.Д., Петрова О. С. и др. // Биохимия. — № 9. — С. 1478 — 1485.

3. Азимова Ш.С., Умарова Г.Д., Тухтаев К.Р., Абдукаримов А.Р. // Биохимия. — № 10. — С. 1640 — 1646.

4. Карпыза Е.И., Киклевич И.Е., Ермоленко М.Н., Свиридов О.В. // Биохимия. — 1993. — Т. 58, № 2. — С. 285 — 293.

5. Свиридов О.В., Ермоленко М.Н., Будникова Л.П., Карпыза И.Е. // Пробл. эндокринол. — 1989. — № 2. — С. 48 — 52.

6. Свиридов О.В., Ермоленко М.Н., Пышко Е.С. и др. // Биохимия. — 1990. — Т. 55, № 2. — С. 329 — 337.

7. Свиридов О.В., Пышко Е.С., Ермоленко М.Н., Стрельченок О.А. // Там же. — № 11. — С. 2002 — 2010.

8. Свиридов О.В., Ермоленко М.Н. // Там же. —1994. — Т. 59, № i. — С. 78-87.

9. Ain К.В., Morí Y., Refetoff S. // J. clin. Endocr. Metab. — 1987. — Vol. 65, N 4. — P. 689-696.

10. Ain K.B., Refetoff S. // Ibid. — 1988.- Vol. 66, N 5. — P. 1037-1043.

11. Alderson R., Pastan I., Cheng S.Y. // Endocrinology. — 1985. — Vol. 116, N 6. — P. 2621-2630.

12. Arevalo G. // Clin. Chem. — 1988. -Vol. 34, N 4. — P. 705- 708.

13. Bartalena L. // Endocr. Rev. — 1990. — Vol. 11, N 1. — P. 47-63.

14. Bashor M.M., Hewett J., Lackey A. et al. // Prep. Biochem. — 1987. — Vol. 17, N 3. — P. 209-227.

15. Benvenga S., Costante G., Melluso R. et.al. // Acta endocr. (Kbh.). — 1983. — Vol. 103, N 1. — P. 46-52.

16. Benvenga S., Trimarchi F., Robbins J. // J. Endocr. Invest. — 1987. — Vol. 10. — P. 605-619.

17. Benvenga S., Cahnmann H.J., Gregg R.E., Robbins J. // J. clin. Endocr. Metab. — 1989. — Vol. 68, N 6. — P. 1067— 1072.

18. Benvenga S., Cahnmann H.J., Gress R.E., Robbins J. // Biochimie. — 1989. — Vol. 71. — P. 263-268.

19. Benvenga S., Robbins J. // Endocrinology. — 1990. — Vol. 126, N 2. — P. 933-941.

20. Benvenga S., Cahnmann H.J., Robbins J. // Ibid. — Vol. 127, N5. — P. 2241-2246.

21. Benvenga S., Cahnmann H. J., Robbins J. Ц Ibid. — 1991. — Vol. 128, N 1. — P. 547-552.

22. Benvenga S., Cahnmann H.J., Rader D. et al. // Ibid. — 1992. — Vol. 131. N 6. — P. 2805-2811.

23. Blake C.C.F., Galley S.J. // Nature. — 1977. — Vol. 268. — P.115-120.

24. Blake C.C.F., Geisow M.J., Oalley S.J. et al. //J. molec. Biol.- 1978. — Vol. 121. — P. 339 356.

25. Bridges C.D.B., Peters T., Smith J.E. et al. // Fed. Proc. — 1986. — Vol. 45, N 9. — P. 2291-2303.

26. Bristow A.F., Gaines-Das R.E., Buttress N. et al. // Clin. Endocr. — 1993. — Vol. 38, N 4. — P. 361-366.

27. Calzi L.L., Benvenga S., Battiato S. et al. // Clin. Chem. — 1988. — Vol. 34, N 12. — P. 2561-2562.

28. Chanoine L.R., Alex S., Fang S.L. // Annual Meeting of the Endocrine Society, 73-rd: Abstracts. — Washington, 1991. — P. 132.

29. Dickson W.R., Aldred A.R., Menting J.G.T. et al. // J. biol. Chem. — 1987. — Vol. 262, N 29. — P. 13907- 13915.

30. Divino C.M., Schussler G.C. // Ibid. — 1990. — Vol. 265, N 3. — P. 1425-1429.

31. Ekins R. // Lancet. — 1985. — Vol. 1. — P. 1129-1132.

32. Ekins R., Edwards P.R. // Amer. J. Phisiol. — 1988. — Vol. 255. — P. E403-E409.

33. Ekins R. U Endocr. Rev. — 1990. — Vol. 11, N 1. — P. 5- 46.

34. Fex G., Laurell C.-B., Thulin E. // Europ. J. Biochem. — 1977. — Vol. 75, N 1. — P. 181-186.

35. Flink I.L., Bailey T.J., Gustafson T.A. et al. // Proc. nat. Akad. Sei. USA. — 1986. — Vol. 83. — P. 7708-7712.

36. Fung W.-P., Thomas T., Dickson P.W. et al. //J. biol. Chem. — 1988. — Vol. 263. — P. 480- 488.

37. Gershengom M. C., Cheng S.-Y., Lippoldt R.E. et al.// Ibid. — 1977,- Vol. 252, N 23. — P. 8713-8718.

38. Gershengom M.C., Lippoldt R.E., Edelhoch ff., Robbins J.U Biochemistry. — 1977.- Vol. 252, N 23. — P. 8719-8723.

39. Grimaldi S., Bartalena L., Carlini F., Robbins J. // Endocrinology. — 1986. — Vol. 118, N 6. — P. 2362—2369.

40. Hammond G.L. // Endocr. Rev. — 1990. — Vol. 11, N1.— P. 65-79.

41. Hashizume K., Sakurai A., Miyamoto T. et al. // Endocr. Jap. — 1986. — Vol. 33, N 5. — P. 665-674.

42. Hennemann G., Docter K. // The Thyroid Gland / Ed. M.A. Greer. — New York, 1990. — P. 221-231.

43. Hoch H., Lewallen C. G. // J. clin. Endocr. Metab. — 1974. — Vol. 38, N 4. — P. 663- 673.

44. Janssen O.E., Bertenshaw R., Takeda K. et al. //Trends Endocr. Metab. — 1991. — Vol. 2. — P. 104 -114.

45. Jornvall H., Carlstrom A., Petterson T. et al. // Nature. — 1981. — Vol. 291. — P. 261-263.

46. Kanda Y,Goodman D.S., Canfield R.E., Morgan F.J. // J. biol. Cem. — 1974. — Vol. 249. — P. 6796-6805.

47. Kostrouch Z., Raska I., Felt V. et al. // Experientia (Basel). — 1987,- Vol. 49, N 10. — P. 1119-1120.

48. Luckebach C., Wahl R., Kallee E. // Europ. J. clin. Chem. clin. Biochem. — 1992. — Vol. 30, N 7. — P. 387 -390.

49. Marione R.L., Herbert J., Dwork A., Shon E.A. // Biochem. biophys. Res. Commun. — 1988. — Vol. 151, N 2. — P. 905— 912.

50. Mita S., Maeda S., Shimada K., Araki S. // Ibid. — 1984. — Vol. 124. — P. 558-568.

51. Mendel C.M., Weisiger R.A., Jones A.L., Cavalieri R.R. // Endocrinology. — 1987. — Vol. 120, N 5. — P. 1742—1749.

52. Mendel C.M., Cavalieri R.R., Weisiger R.A. // Ibid. — 1988. — Vol. 123, N 4. — P. 1817-1824.

53. Mendel C.M. ¡/ Endocr. Rev. — 1989. — Vol. 10, N 3. — P. 232—274.

54. Munro S.L., Lim C.F., Hall J.G. et al. // J. clin. Endocr. Mctab. — 1989. — Vol. 68, N 6. — P. 1141 -1147.

55. Pardridge W.M., Premachandra B.M., Fierer G. // Amer. J. Phisiol. — 1985. — Vol. 248. — P. G545-G55O.

56. Pardridge W.M. // Ibid. — 1987. — Vol. 252. — P. E157 — EI64.

57. Pemberton P.A., Stein P.E., Pepys M.B. et al. // Nature. — 1988. — Vol. 336. — P. 257-258.

58. Peters T.Jr. // Advanc. Protein Chem. — 1985. — Vol. 37. — P. 161- 246.

59. Petterson T., Carlstrom A., Jornvall H. // Biochemistry. — 1987. — Vol. 26, N 14. — P. 4578-4583.

60. Petterson T.M., Carlstrom A., Ehrenberg A., Jornvall H. // Biochem. biophys. Res. Commun. — 1989. — Vol. 158, N 4. — P. 341-347.

61. Putnam F.W. // The Plasma Proteins / Ed. F. W. Putnam. — 2-nd Ed. — New York, 1987. — Vol. 5. — P. 50-140.

62. Rejatanavin R., Liberman C., Lawrence C.D. et al. //J. clin. Endocr. Metab. — 1985. — Vol. 61, N 1. — P. 17—21.

63. Refetojf S., Fang V.S., Marshall J.S. Ц Ibid. — 1975. — Vol. 56. — P. 177-182.

64. Refetojf S., Dwulet F.E., Benson M.D. // Ibid. — 1986. — Vol. 63, N 6. — P. 1432-1437.

65. Refetoff S. // Endocr. Rev. — 1989. — Vol. 10, N 3. — P. 275-293.

66. Reid D.G., Saunders M.R. // J. biol. Chem. — 1989. — Vol. 264, N 4. — P. 2003-2012.

67. Robbins J., Rail J.E., Rawson R.W. // J. clin. Endocr. Metab. — 1956. — Vol. 16, N 5. — P. 573- 579.

68. Robbins J., Rail J.E. // Physiol. Rev. — 1960. — Vol. 40. — P. 415-489.

69. Robbins J., Bartalena L. // Thyroid Hormone Metabolism / Ed. G. Hennemann. — New York, 1986. — P. 3—38.

70. Robbins J. Ц The Thyroid / Ed. R.D.Utiger. — Philadelphia, 1991. — P. 116-127.

71. Scanu A.M. // The Plasma Proteins. — New York,1987. — Vol. 5. — P. 142.

72. Schussler G.C. //Thyroid. — 1990. — Vol. 1, N 1. — P. 25— 34.

73. Schussler G., Divino C.M., Saraiva M.J. // Progress in Thyroid Research / Eds A.Gordon, /.Gross, G.Hennemann. — Rotterdam, 1991. — P. 725—728.

74. Siegel J.S., Villanueva G.B., Korcek L., Tabachnik M. // Int. J. Biochem. — 1984. — Vol. 16. N 5. — P. 575-577.

75. Strel’chyonok G.A., Avvakumov G.V., Akhrem A.A. Ц Carbo- hydr. Res.- 1984. — Vol.134. — P. 133- 140.

76. Strel’chyonok G.A., Avvakumov G.V. // J. Steroid Biochem. — 1990. — Vol.35,N 5. — P. 519-534.

77. Tabachnik M. //J. biol. Chem. — 1967. — Vol. 242, N 7. — P. 1646 -1650.

78. Teru S. I I Europ. J. nucl. Med. — 1984. — Vol. 9, N 3. — P. 121-124.

79. Trent J.M., Flink I.L., Morkin E. et al. // Amer. J. hum. Genet. — 1987. — Vol. 41, N 3. — P. 428-435.

80. Wahl R., Schmidberger H., Fessler E. et al. // Endocrynology. — 1989. — Vol. 124, N 3. — P. 1428-1437.

81. Weisiger R., Gollan J., Ockner R. // Science. — 1981. — Vol.211. — P. 1048-1051.

82. Zinn A.B., Marshall J.S., Carlson D.M. // J. biol. Chem. — 1978. — Vol. 253, N 19. — P. 6768-6773.

РОЛЬ БЕЛКА ТЕПЛОВОГО ШОКА 70 В ПАТОГЕНЕЗЕ СЕРДЕЧНО-СОСУДИСТОЙ ПАТОЛОГИИ | Понасенко

1. Искаков Е.Б. Эпидемиология сердечно-сосудистых заболеваний // Медицина и экология, 2017. № 2. С. 19-28. [Iskakov E.B. Epidemiology of cardiovascular diseases. Meditsina i ekologiya = Medicine and Ecology, 2017, no. 2, pp. 19-28. (In Russ.)]

2. Ковальчук Л.В., Ганковская Л.В., Мешкова Р.Я. Клиническая иммунология и аллергология с основами общей иммунологии. М.: ГЭОТАР-Медиа, 2011. 640 с. [Kovalchuk L.V., Gankovskaya L.V., Meshkova R.Ya. Clinical immunology and allergology with the basics of general immunology]. Moscow: GEOTAR-Media, 2011. 640 p.

3. Научно-организационный комитет проекта ЭССЕ-РФ. Эпидемиология сердечно-сосудистых заболеваний в различных регионах России (ЭССЕ-РФ). Обоснование и дизайн исследования // Профилактическая медицина, 2013. Т. 16, № 6. С. 25-34. [Research organizing committee of the ESSE-RF project. Epidemiology of cardiovascular diseases in different regions of Russia (ESSE-RF). The rationale for and design of the study. Profilakticheskaya meditsina = Preventive Medicine, Vol. 16, no. 6, pp. 25-34. (In Russ.)]

4. Anders H.J., Baumann M., Tripepi G., Mallamaci F. Immunity in arterial hypertension: Associations or causalities? Nephrol. Dial. Transplant., 2015, Vol. 30, no. 12, pp. 1959-1964.

5. Barthelmes J., Nägele M.P., Ludovici V., Ruschitzka F., Sudano I., Flammer A.J. Endothelial dysfunction in cardiovascular disease and Flammer syndrome-similarities and differences. EPMA J., 2017, Vol. 8, no. 2, pp. 99-109.

6. Bernardo B.C., Weeks K.L., Patterson N.L., McMullen J.R. HSP70: therapeutic potential in acute and chronic cardiac disease settings. Future Med. Chem., 2016, Vol. 8, no. 18, pp. 2177-2183.

7. Bielecka-Dabrowa A., Barylski M., Mikhailidis D.P., Rysz J., Banach M. HSP 70 and atherosclerosis – protector or activator? Expert Opin. Ther. Targets, 2009, Vol. 13, no. 3, pp. 307-317.

8. Bomfim G.F., dos Santos R.A., Oliveira M.A., Giachini F.R., Akamine E.H., Tostes R.C., Fortes Z.B., Webb R.C., Carvalho M.H.C. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin. Sci. (Lond)., 2012, Vol. 122, no. 11, pp. 535-543.

9. Cai W.-F., Zhang X.-W., Yan H.-M., Ma Y.-G., Wang X.-X., Yan J., Xin B.-M., Lv X.-X., Wang Q.-Q., Wang Z.-Y., Yang H.-Z., Hu Z.-W. Intracellular or extracellular heat shock protein 70 differentially regulates cardiac remodelling in pressure overload mice. Cardiovasc. Res., 2010, Vol. 88, no. 1, pp. 140-149.

10. Chebotareva N., Bobkova I., Shilov E. Heat shock proteins and kidney disease: perspectives of HSP therapy. Cell Stress and Chaperones, 2017, Vol. 22, no. 3. pp. 319-343.

11. Frantz S., Ertl G., Bauersachs J. Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med., 2007, Vol. 4, no. 8. pp. 444-454.

12. Goulopoulou S., McCarthy C.G., Webb R.C. Toll-like receptors in the vascular system: Sensing the dangers within. Pharmacol. Rev., 2015, Vol. 68, no. 1, pp. 142-167.

13. Gruden G., Bruno G., Chaturvedi N., Burt D., Pinach S., Schalkwijk C., Stehouwer C.D., Witte D.R., Fuller J.H., Cavallo-Perin P. ANTI-HSP60 and ANTI-HSP70 antibody levels and micro/ macrovascular complications in type 1 diabetes: The EURODIAB Study. J. Intern. Med., 2009, Vol. 266, no. 6, pp. 527-536.

14. Herz I., Rosso R., Roth A., Keren G., George J. Serum levels of anti heat shock protein 70 antibodies in patients with stable and unstable angina pectoris. Acute Card. Care, 2006, Vol. 8, no. 1, pp. 46-50.

15. Hromadnikova I., Dvorakova L., Kotlabova K., Kestlerova A., Hympanova L., Novotna V., Doucha J., Krofta L. Circulating heat shock protein mRNA profile in gestational hypertension, pre-eclampsia & foetal growth restriction. Indian J. Med. Res., 2016, Vol. 144, no. 2, p. 229.

16. Kim Y.E., Hipp M.S., Bracher A., Hayer-Hartl M., Ulrich Hartl F. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem., 2013, Vol. 82, no. 1, pp. 323-355.

17. Li Y., Yu S., Gu G., Chen G., Zheng Y., Jiao J., Zhou W., Wu H., Zhang Z., Zhang H., He L., Yang Q., Xu X. Polymorphisms of heat shock protein 70 genes (HSPA1A, HSPA1B and HSPA1L) and susceptibility of noiseinduced hearing loss in a Chinese population: A case-control study. PLoS ONE, 2017, Vol. 12, no. 2, pp. 1-12.

18. Mardan-Nik M., Pasdar A., Jamialahmadi K., Avan A., Mohebati M., Esmaily H., Biabangard-Zak A., Afzal Javan F., Rivandi M., Ferns G.A., Ghayour-Mobarhan M. Association of heat shock protein70-2 (HSP70-2) gene polymorphism with obesity. Ann. Hum. Biol., 2016, Vol. 43, no. 6, pp. 542-546.

19. Mian M.O.R., Paradis P., Schiffrin E.L. Innate immunity in hypertension. Curr. Hypertens. Rep., 2014, Vol. 16, no. 2, p. 413.

20. Park K.-H., Park W.J. Endothelial dysfunction: Clinical implications in cardiovascular disease and therapeutic approaches. J. Korean Med. Sci., 2015, Vol. 30, no. 9, p. 1213.

21. Pockley A.G., de Faire U., Kiessling R., Lemne C., Thulin T., Frostegård J. Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J. Hypertens., 2002, Vol. 20, no. 9, pp. 1815-1820.

22. Pockley A.G., Georgiades A., Thulin T., de Faire U., Frostegård J. Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension, 2003, Vol. 42, no. 3, pp. 235-238.

23. Poon P.Y.K., Szeto C.C., Kwan B.C.H., Chow K.M., Li P.K.T. Relationship between HSP70-2 A+1267G polymorphism and cardiovascular events of chinese peritoneal dialysis patients. Nephron. Clin. Pract., 2014, Vol. 128, no. 1-2, pp. 153-158.

24. Pryshchep O., Ma-Krupa W., Younge B.R., Goronzy J.J., Weyand C.M. Vessel-specific toll-like receptor profiles in human medium and large arteries. Circulation, 2008, Vol. 118, no. 12, pp. 1276-1284.

25. Schlesinger M.J. Heat shock proteins. J. Biol. Chem., 1990, Vol. 265, no. 21, pp. 12111-12114.

26. Sharma S., Garg I., Ashraf M.Z. TLR signalling and association of TLR polymorphism with cardiovascular diseases. Vascul. Pharmacol., 2016, Vol. 87, pp. 30-37.

27. Srivastava K., Narang R., Bhatia J., Saluja D. Expression of heat shock protein 70 gene and its correlation with inflammatory markers in essential hypertension. PLoS ONE, 2016, Vol. 11, no. 3, pp. 1-15.

28. Teague H.L., Ahlman M.A., Alavi A., Wagner D.D., Lichtman A.H., Nahrendorf M., Swirski F.K., Nestle F., Gelfand J.M., Kaplan M.J., Grinspoon S., Ridker P.M., Newby D.E., Tawakol A., Fayad Z.A., Mehta N.N. Unraveling vascular inflammation: from immunology to imaging. J. Am. Coll. Cardiol., 2017, Vol. 70, no. 11. pp. 1403-1412.

29. Vogt S., Portig I., Kusch B., Pankuweit S., Sirat A.S., Troitzsch D., Maisch B., Moosdorf R. Detection of antihsp70 immunoglobulin G antibodies indicates better outcome in coronary artery bypass grafting patients suffering from severe preoperative angina. Ann. Thorac. Surg, 2004, Vol. 78, no. 3, pp. 883-889.

30. Wallin R.P.A., Lundqvist A., Moré S.H., von Bonin A., Kiessling R., Ljunggren H.G. Heat-shock proteins as activators of the innate immune system. Trends Immunol., 2002, Vol. 23, no. 3. pp. 130-135.

31. Wenzel U., Turner J.E., Krebs C., Kurts C., Harrison D.G., Ehmke H. Immune mechanisms in arterial hypertension. J. Am. Soc. Nephrol., 2016, Vol. 27, no. 3, pp. 677-686.

32. Xiao L., Liu Y., Wang N. New paradigms in inflammatory signaling in vascular endothelial cells. AJP Hear. Circ. Physiol., 2014, Vol. 306, no. 3, pp. h417-h425.

33. Zhang X., Tanguay R.M., He M., Deng Q., Miao X., Zhou L., Wu T. Variants of HSPA1A in combination with plasma Hsp70 and anti-Hsp70 antibody levels associated with higher risk of acute coronary syndrome. Cardiology, 2011, Vol. 119, no. 1, pp. 57-64.

Роль белка и аминокислот в поддержании и повышении эффективности — Комитет по военным исследованиям в области питания

Поскольку американские вооруженные силы сталкиваются с тысячелетием и меняющимся характером современных войн, они должны предвидеть физические и психические проблемы, с которыми никогда раньше не сталкивались. Более длительные периоды интенсивных физических нагрузок и возможное голодание; современное вооружение, требующее максимального внимания, точности и способности принимать решения; и более серьезные угрозы инфекций, травм и воздействия факторов окружающей среды быстро становятся реальностью, с которой сталкиваются солдаты.Военные ученые, которым поручено поддерживать и оптимизировать здоровье и производительность своего персонала, изучают роль, которую питание может играть в этом процессе, и проявили особый интерес к текущим исследованиям, предполагающим важность белков и аминокислот.

Белки катализируют практически все химические реакции в организме, регулируют экспрессию генов, составляют основные структурные элементы всех клеток, регулируют иммунную систему и образуют основные составляющие мышц.Отдельные аминокислоты, составляющие белки, также служат нейротрансмиттерами, гормонами и модуляторами различных физиологических процессов. Каждый аспект физиологии включает белки. Взаимосвязь между диетическим белком и метаболизмом белка в организме является основным объектом исследований. Кроме того, продолжается изучение влияния генетических факторов, гормонов, физической активности, травм и инфекционных процессов, а также экологических стрессов на метаболизм и потребности в белках.

Запрос на этот обзор исходил от ученых из USARIEM, которые были обеспокоены уникальными потребностями в питании, предъявляемыми к солдатам во время боя. Они были особенно обеспокоены той ролью, которую диетический белок может играть в контроле мышечной массы и силы, реакции на травмы и инфекции и когнитивных способностях.

Несколько предыдущих отчетов CMNR были сосредоточены на вопросах питания и производительности белка. В 1992 г. CMNR отметила при оценке тренировок армейских рейнджеров, что обучающиеся испытывали значительную потерю мышечной массы в периоды интенсивных физических нагрузок (IOM, 1992b).В последующем отчете (IOM, 1993b) было обнаружено, что увеличение потребления энергии лишь частично предотвратило такие потери. В отчете «Пищевые компоненты для повышения производительности» (IOM, 1994b) кратко рассмотрено влияние белка и аминокислот на физическую и когнитивную деятельность и реакцию на стресс. В самом последнем отчете CMNR, Военные стратегии обеспечения питания и иммунной функции в полевых условиях (IOM, 1999), рассматривалось влияние диеты, включая белок и отдельные аминокислоты, такие как глутамин, на иммунный ответ.В этом отчете подробно рассматриваются многие вопросы, касающиеся оптимального уровня потребления белка в полевых условиях с высоким уровнем стресса. Как измерить белковый баланс и точно оценить потребность в белке; как на эти требования влияют физическая активность, пол, гормональные факторы и стресс; и вопрос о том, влияют ли на мышечную функцию и познавательные способности потребление белка и отдельные аминокислоты, — все это активные области исследований.

CMNR решила, что лучший способ проверить состояние знаний в этой области — провести семинар.Цель этого семинара состояла в том, чтобы собрать вместе ведущих ученых в области метаболизма белков для получения их оценки текущего состояния знаний и определения на основе этих оценок на основе внимательного чтения литературы и опыта специалистов. сами члены комитета, независимо от того, следует ли изменить рекомендуемое потребление белка или отдельных аминокислот для солдат.

В мае 1996 года сотрудники CMNR и USARIEM встретились, чтобы сформулировать серию вопросов, наметить план семинара и определить квалифицированных докладчиков.В январе 1997 года было проведено последующее совещание по планированию, в котором приняли участие несколько членов Подкомитета по телосложению, питанию и здоровью женщин-военнослужащих. Приглашенных докладчиков семинара попросили подготовить доклад для презентации и публикации, в котором описаны ключевые вопросы метаболизма белков. Ученые USARIEM также приняли участие в семинаре, результатом которого стала разносторонняя группа. На однодневном семинаре, состоявшемся 13 марта 1997 г. в Вашингтоне, округ Колумбия, каждый докладчик представил официальную презентацию, после которой последовали вопросы и короткое обсуждение.Все слушания были записаны на магнитную ленту и профессионально расшифрованы. В конце каждой группы презентаций проводилось общее обсуждение общей темы. Сразу после семинара CMNR собралась на исполнительное заседание, чтобы рассмотреть проблемы, составить резюме презентаций и дать ответы на вопросы спонсора. Впоследствии члены комитета встретились с персоналом в июне 1997 года и работали по отдельности и вместе, используя авторские документы, дополнительные справочные материалы, предоставленные персоналом в результате ограниченного поиска литературы, а также личные знания и опыт для составления обзора, резюме, выводов и рекомендаций.

Основными вопросами, которые CMNR и BCNH (и, в свою очередь, докладчикам) попросили ответить, были:

1.

Увеличиваются ли потребности в белке из-за факторов стресса военной деятельности, включая высокую рабочую нагрузку и / или дефицит энергии?

2.

Каково оптимальное содержание белка (соотношение белка к энергии) для стандартных рабочих рационов и, в частности, является рекомендуемая военными нормами диеты (MRDA) для белка в рабочих рационах (100 г / день для мужчин и 80 г / сут для женщин) подходит? Подходит ли протеин MRDA для женщин во время беременности и кормления грудью?

3.

Есть ли доказательства того, что добавление определенных аминокислот (АК) может оптимизировать военные показатели (когнитивные функции) при высокой нагрузке, психологическом стрессе и / или дефиците энергии? (См. Резюме выступающих). Существует ли риск использования определенных добавок АК во время беременности, особенно в первом триместре (т. Е. Органогенезе)?

4.

Существуют ли гендерные различия в потребностях в белке при упражнениях на выносливость, и если да, то каковы могут быть их последствия для производительности в военных операциях? Какие есть доказательства того, что белок способствует наращиванию мышечной массы?

Комитеты встретились после семинара на исполнительном заседании, как указано выше, чтобы подготовить первоначальные ответы на эти вопросы, а также восемь дополнительных подвопросов, которые, по мнению CMNR и BCNH, необходимо рассмотреть.

Выводы и рекомендации

  • Как рекомендовалось в более ранних отчетах МОМ (IOM, 1992a, 1995a), солдатам следует уделять особое внимание адекватному потреблению питательных веществ (с достаточной энергией, чтобы соответствовать выработке и избегать потери веса) средства для поддержания мышечной массы.

  • Военные исследователи и врачи должны уделять пристальное внимание гражданским исследованиям влияния лечения анаболическими гормонами на выздоровление после ожогов и других травм.Там, где это уместно, следует разрабатывать модели для военных целей.

  • Необходимо сохранить текущие MRDA для белка. При условии адекватного потребления энергии беременным и беременным не требуется увеличивать MRDA. кормящая женщина.

  • При достаточном питании солдаты не должны использовать протеиновые добавки для наращивания мышечной массы.

  • Белок, поставляемый в рабочих рационах, должен быть высокого качества и усвояемостью.

  • Потребление энергии должно быть адекватным, и источник энергии должен быть потреблен в течение 2 часов после интенсивной тренировки на выносливость, чтобы восполнить истощенный мышечный гликоген.

  • Добавки с одной аминокислотой не следует использовать для изменения когнитивных функций из-за потенциальной токсичности и недостаточных доказательств эффективности.

  • Военные должны проверить способность дополнительных глютамина и аргинина усиливать иммунный ответ и снижать уровень инфицирования в полевых условиях и у серьезно раненых госпитализированных пациентов.

  • Учитывая высокое содержание белка в рабочем рационе, следует уделять особое внимание адекватному потреблению жидкости, как рекомендовано в Доктрине жидкости (IOM, 1994).

<> <> <> <> <> <> <> <> <> <> <> <>

Ответы комитета на вопросы, выводы и рекомендации из этого отчета включены в Приложение M.

Роль белков

Белки

Роль
белков

ср
протеин нужен для роста и ремонта. Белки используются для производства клеток нашего тела.В частности, они используются при образовании новой протоплазмы. Антитела,
ферменты и гормоны также состоят из белков. Наконец, белки могут обеспечить
мы с энергией (хотя организм расщепляет белок только тогда, когда все
углеводы и жир ушли: другими словами, когда вы голодаете).

Почему они называются белками?

Белка
происходит от греческого слова proteios, что означает
«первичный» или «занимающий первое место».»Голландский химик
Джерард Иоганн Малдер придумал слово протеин в 1838 году.

Аминокислоты

Белки состоят из цепочек аминокислот. Есть
двадцать различных аминокислот, поэтому клетке требуется много информации, чтобы
белок вместе (, что из 20
это первая аминокислота в цепи, вторая, третья
так далее).
Эта информация в конечном итоге исходит от ДНК.Белок часто состоит
сотен аминокислот, связанных вместе.

Еда
Источники белков

худой
мясо, рыба, яйца, молоко и сыр — важные источники животного белка. Все
растения содержат белок, но бобы, орехи или злаки — лучшее растение
источники.

Энергия белков

В отличие от углеводов или жиров, которые могут дать нам
энергия, белки обычно используются для построения частей клетки.Другими словами
они представляют собой сырье, необходимое клетке для производства клеток и тканей.
Когда съедается избыток белка, лишний белок может быть разбит на
энергоемкие соединения. Потому что белков намного меньше, чем углеводов
и дает те же 4 калории на грамм, потребление мяса сверх нормы
потребности организма в создании тканей становятся неэффективным способом производства
энергия.

Полные и неполные белки

Завершено
белки — это продукты, содержащие все необходимые аминокислоты.Большинство животных
продукты, такие как мясо, птица, рыба, яйца, сыр и молоко, являются полноценными
белки. Некоторые растительные белки тоже являются полноценными. Соевые продукты, такие как
тофу, также являются полноценными белками. Яйца — хороший источник полноценных белков.

Неполные белки — это белки, содержащие небольшие количества
одной или нескольких незаменимых аминокислот. Большинство растительных продуктов неполноценны, например:
бобовые (фасоль и горох), орехи, семена, зерна и овощи.

Объединение неполных белков для получения полных белков

Хотя
растительные белки неполноценны, еще можно получить все необходимое
аминокислоты, употребляя в пищу комбинацию растительных белков.Например, арахис
сливочное масло с низким содержанием метионина аминокислоты. Хлеб
много метионина, но не хватает лизина и изолейцина. Так бутерброд с арахисовым маслом становится полноценным
белок.

Продукты животного происхождения содержат полноценные белки
потому что они включают в себя все незаменимые аминокислоты. В большинстве диет
рекомендуется сочетание растительного и животного белка: 0,8 грамма на килограмм
веса тела считается безопасной дневной нормой для нормального взрослого человека.

Белок
связанные проблемы со здоровьем.

Слишком много белка в рационе может быть опасно. Дополнительный
Белок содержит азот, который в печени превращается в отходы, называемые мочевиной.
Почки выводят азотные отходы с мочой. Слишком много белка может положить
нагрузка на печень и почки. Когда необходимо образовать лишнюю мочу для удаления
избыток отходов, организм может обезвоживаться.Слишком много белка также может сделать
один лишний вес, так как излишки белков превращаются в печени в жиры, которые
хранится в организме.

Недостаток белков приведет к ослаблению организма, неспособному бороться с болезнями.
Диета может привести к тому, что организм не получит достаточно питательных веществ. Вы можете получить достаточно
калорий для удовлетворения ваших энергетических потребностей, но у вас нет всех необходимых аминокислот.
кислоты.

Недостаток белка
практически неизвестен в рационе питания в этой стране (поэтому компании, продвигающие белков
напитки или добавки с аминокислотами тратят ваши деньги (
).

Дефицит белка приводит к болезни квашиоркор , которая обычно встречается
в странах, где голод является проблемой.

Одним из симптомов квашиоркора является вздутие живота,
что по иронии судьбы на первый взгляд заставляет ребенка выглядеть сытым.

Функция белков | Биология для майоров I

Результаты обучения

  • Определите несколько основных функций белков

Основные типы и функции белков перечислены в таблице 1.

Таблица 1. Типы и функции белков
Тип Примеры Функции
Пищеварительные ферменты Амилаза, липаза, пепсин, трипсин Помощь в переваривании пищи за счет катаболизма питательных веществ до мономерных единиц
Транспорт Гемоглобин, альбумин Переносит вещества в крови или лимфе по телу
Строительный Актин, тубулин, кератин Создавать различные структуры, такие как цитоскелет
Гормоны Инсулин, тироксин Координировать деятельность различных систем организма
Оборона Иммуноглобулины Защитите организм от инородных патогенов
Сокращение Актин, миозин Эффект сокращения мышц
Хранилище Запасные белки бобовых, яичный белок (альбумин) Обеспечить питание на ранних этапах развития зародыша и проростка

Два специальных и распространенных типа белков — это ферменты и гормоны. Ферменты , которые вырабатываются живыми клетками, являются катализаторами биохимических реакций (например, пищеварения) и обычно представляют собой сложные или конъюгированные белки. Каждый фермент специфичен для субстрата (реагента, который связывается с ферментом), на который он действует. Фермент может помочь в реакциях разложения, перегруппировки или синтеза. Ферменты, которые расщепляют свои субстраты, называются катаболическими ферментами, ферменты, которые строят более сложные молекулы из своих субстратов, называются анаболическими ферментами, а ферменты, влияющие на скорость реакции, называются каталитическими ферментами.Следует отметить, что все ферменты увеличивают скорость реакции и, следовательно, считаются органическими катализаторами. Примером фермента является амилаза слюны, которая гидролизует свою субстратную амилозу, компонент крахмала.

Гормоны — это химические сигнальные молекулы, обычно небольшие белки или стероиды, секретируемые эндокринными клетками, которые действуют, чтобы контролировать или регулировать определенные физиологические процессы, включая рост, развитие, метаболизм и размножение. Например, инсулин — это белковый гормон, который помогает регулировать уровень глюкозы в крови.

Белки имеют разную форму и молекулярную массу; некоторые белки имеют глобулярную форму, тогда как другие имеют волокнистую природу. Например, гемоглобин — это глобулярный белок, а коллаген, обнаруженный в нашей коже, — это волокнистый белок. Форма белка имеет решающее значение для его функции, и эта форма поддерживается многими различными типами химических связей. Изменения температуры, pH и воздействие химикатов могут привести к необратимым изменениям формы белка, что приведет к потере функции, известной как денатурация.Все белки содержат разные расположения одних и тех же 20 типов аминокислот. Недавно были открыты две редкие новые аминокислоты (селеноцистеин и пирролизин), и к этому списку могут быть добавлены новые открытия.

Резюме: функция белков

Белки — это класс макромолекул, которые выполняют широкий спектр функций для клетки. Они помогают метаболизму, обеспечивая структурную поддержку и действуя как ферменты, переносчики или гормоны. Строительными блоками белков (мономеров) являются аминокислоты.Каждая аминокислота имеет центральный углерод, связанный с аминогруппой, карбоксильной группой, атомом водорода и R-группой или боковой цепью. Существует 20 обычно встречающихся аминокислот, каждая из которых отличается по группе R. Каждая аминокислота связана со своими соседями пептидной связью. Длинная цепь аминокислот известна как полипептид.

Белки подразделяются на четыре уровня: первичный, вторичный, третичный и (необязательно) четвертичный. Первичная структура — это уникальная последовательность аминокислот.Локальное сворачивание полипептида с образованием таких структур, как спираль α и складчатый лист β , составляет вторичную структуру. Общая трехмерная структура — это третичная структура. Когда два или более полипептида объединяются, чтобы сформировать полную структуру белка, такая конфигурация известна как четвертичная структура белка. Форма и функция белка неразрывно связаны; любое изменение формы, вызванное изменениями температуры или pH, может привести к денатурации белка и потере функции.

Внесите свой вклад!

У вас была идея улучшить этот контент? Нам очень понравится ваш вклад.

Улучшить эту страницуПодробнее

Почему белок важен в вашем рационе?

Достаточно ли белка в вашем рационе? Хотя вы можете следить за потреблением калорий, сахара и соли, вам также следует убедиться, что вы потребляете достаточно белка. Он играет ключевую роль в создании и поддержании каждой клетки нашего тела. Он питает наши клетки и питает наши тела.

Нэнси Вальдек, шеф-повар и диетолог семейного онкологического центра Томаса Ф. Чепмена в Пьемонте, отмечает, что наши тела не накапливают белок.

«Людям важно потреблять белок каждый день. Ежедневное потребление белка играет важную роль в поддержании ваших клеток в хорошей форме и должно быть частью вашего ежедневного плана поддержания здоровья ».

Белок состоит из аминокислот, широко известных как строительные блоки, потому что они связаны длинными цепями. Он также считается «макроэлементом», что означает, что вам нужно относительно большое его количество, чтобы оставаться здоровым.

Зачем вашему организму белок

Вот пять веских причин, по которым вы должны получать достаточно белка каждый день:

1. Сборка. Белок является важным строительным материалом для костей, мышц, хрящей и кожи. Фактически, ваши волосы и ногти в основном состоят из белка.

2. Ремонт. Ваше тело использует его для создания и восстановления тканей.

3. Кислород. Красные кровяные тельца содержат белковое соединение, переносящее кислород по всему телу.Это помогает снабжать все ваше тело необходимыми питательными веществами.

4. Дайджест. Около половины диетического белка, который вы потребляете каждый день, идет на выработку ферментов, которые помогают переваривать пищу, а также производить новые клетки и химические вещества в организме.

5. Регулируйте. Белок играет важную роль в регуляции гормонов, особенно во время трансформации и развития клеток в период полового созревания.

Как белок помогает оставаться в форме

Употребление в пищу продуктов с высоким содержанием белка имеет много преимуществ для фитнеса, в том числе:

  • Ускорение восстановления после тренировки и / или травмы
  • Снижение потери мышечной массы
  • Наращивание мышечной массы
  • Помогаем поддерживать нормальный вес
  • Сдерживание голода

Вальдек отмечает еще одно преимущество протеина — он быстрее насытит.

«Протеин плюс клетчатка дольше сохраняет нас сытыми, а это значит, что вы не чувствуете желания есть так часто. Это помогает снизить вес, одновременно обеспечивая наши клетки необходимыми питательными веществами ».

Щелкните здесь, чтобы получить дополнительные советы по питанию.

Вам нужно записаться на прием к врачу из Пьемонта? Экономьте время, бронируйте онлайн.

Что такое белки и каковы их функции в организме?

Последнее обновление: 16 декабря 2019 г.

Белки состоят из многих строительных блоков, известных как аминокислоты.Нашему организму нужен диетический белок, чтобы поставлять аминокислоты для роста и поддержания наших клеток и тканей. Наши диетические потребности в белке меняются на протяжении всей жизни. Европейское управление по безопасности пищевых продуктов (EFSA) рекомендует взрослым потреблять не менее 0,83 г белка на кг массы тела в день (например, 58 г в день для взрослого человека весом 70 кг). Белки растительного и животного происхождения различаются по качеству и усвояемости, но обычно это не вызывает беспокойства у большинства людей, если их общий белок соответствует их потребностям. Мы должны стремиться потреблять белок из различных источников, который приносит пользу как нашему здоровью, так и планетам.

Из чего состоят белки?

Белки состоят из множества различных аминокислот, связанных вместе. Существует двадцать различных строительных блоков из этих аминокислот, которые обычно встречаются в растениях и животных. Типичный белок состоит из 300 или более аминокислот, и конкретное количество и последовательность аминокислот уникальны для каждого белка. Подобно алфавиту, «буквы» аминокислот могут быть расположены миллионами различных способов для создания «слов» и целого белкового «языка».В зависимости от количества и последовательности аминокислот полученный белок будет принимать определенную форму. Эта форма очень важна, поскольку она будет определять функцию белка (например, мышц или ферментов). У каждого вида, включая человека, есть свои характерные белки.

Аминокислоты подразделяются на незаменимые и несущественные. Как следует из названия, незаменимые аминокислоты не могут вырабатываться организмом и, следовательно, должны поступать из нашего рациона. В то время как незаменимые аминокислоты могут вырабатываться организмом и, следовательно, не должны поступать с пищей.

Таблица 1. Незаменимые и заменимые аминокислоты.

Незаменимые аминокислоты

Незаменимые аминокислоты

Гистидин

Изолейцин

Лейцин

Лизин

метионин

Фенилаланин

Треонин

Триптофан

Валин

Аланин

Аргинин *

Аспарагин

Аспартат

Цистеин *

Глутамат

Глютамин *

Глицин *

Пролин *

Серин

Таурин *

Тирозин *

* это условно незаменимые аминокислоты, что означает, что они необходимы только при определенных условиях (например,грамм. для новорожденных). 1

Что белки делают для организма?

Наши тела состоят из тысяч различных белков, каждый из которых выполняет определенную функцию. Они составляют структурные компоненты наших клеток и тканей, а также многие ферменты, гормоны и активные белки, секретируемые иммунными клетками (рис. 1).

Эти белки организма постоянно восстанавливаются и заменяются на протяжении всей нашей жизни. Этот процесс (известный как «синтез белка») требует постоянного поступления аминокислот.Хотя некоторые аминокислоты могут быть переработаны в результате распада старых белков организма, этот процесс несовершенен. Это означает, что мы должны потреблять диетический белок, чтобы удовлетворить потребности нашего организма в аминокислотах.

Поскольку белок необходим для роста клеток и тканей, адекватное потребление белка особенно важно в периоды быстрого роста или повышенной потребности, например, в детстве, подростковом возрасте, беременности и кормлении грудью. 1

Рисунок 1. Функции белков в организме.

Какие продукты с высоким содержанием белка?

Белок содержится как в растительной, так и в животной пище. На рисунке 2 показано содержание белка в типичной порции обычных продуктов животного и растительного происхождения. Для получения дополнительной информации о том, как оценить размер здоровых порций, см. Раздел Измерение размеров порций руками.

Рис. 2. Продукты с высоким содержанием белка. 2

Есть ли разница между белками животного и растительного происхождения?

Как видно из рисунка 2, продукты животного и растительного происхождения могут быть богатыми источниками белка.Но одинаковы ли они по качеству?

Качество протеина можно определить по-разному; однако все определения относятся к распределению и соотношению незаменимых и заменимых аминокислот, которые они содержат. В целом, белки животного происхождения имеют более высокое качество, поскольку они содержат более высокие пропорции незаменимых аминокислот по сравнению с белками растительного происхождения.

Существует распространенное заблуждение, что в растительных белках полностью отсутствуют определенные незаменимые аминокислоты. Фактически, большинство растительных белков будут содержать все 20 аминокислот, но, как правило, имеют ограниченное количество определенных незаменимых аминокислот, известных как их ограничивающие аминокислоты.Это означает, что если небольшое количество растительных продуктов потребляется в качестве единственных источников белка, они вряд ли обеспечат достаточное количество незаменимых аминокислот для удовлетворения наших потребностей. Для людей, которые практически не потребляют продукты животного происхождения, таких как веганы или вегетарианцы, важно, чтобы они потребляли белок из источников с дополнительными ограничивающими аминокислотами. Например, потребление риса (с ограниченным содержанием лизина и тиамина, но с высоким содержанием метионина) и бобов (с ограниченным содержанием метионина, но с высоким содержанием лизина и тиамина) обеспечит дополнительные аминокислоты, которые могут помочь удовлетворить потребности в незаменимых аминокислотах.

Белки животного и растительного происхождения также различаются по своей биодоступности и усвояемости. Оценка усвояемых незаменимых аминокислот (DIAAS) является рекомендуемым методом для определения перевариваемости диетического белка и выражается в значениях ниже или иногда даже выше 100. 3 DIAAS более 100 указывает на то, что белок имеет очень высокую усвояемость и качество и является хороший протеин, дополняющий те, которые имеют более низкие качества. Белки животного происхождения, как правило, имеют более высокие баллы DIAAS по сравнению с белками растительного происхождения (таблица 2).Поскольку большинство людей потребляют белок из различных источников, качество и усвояемость белка обычно не вызывает беспокойства.

Таблица 2. DIAAS и качество различных типов протеина на 100 г пищи. 3, 4

Тип белка

DIAAS

Качество

Пшеница

40

Низкий

Миндаль

40

Низкий

Рис

59

Низкий

Горох

64

Низкий

Нут

83

средний

Куриная грудка

108

Высокая

Яйцо

113

Высокая

Цельное молоко

114

Высокая

Сколько белка мы должны есть каждый день?

EFSA разработало диетические контрольные значения (DRV) для белка.DRV для белка на разных этапах жизни сведены в таблицу 3. Для среднего взрослого рекомендуется потреблять не менее 0,83 г белка на каждый килограмм массы тела в день. 1 Другими словами, взрослый человек весом 70 кг должен стремиться съедать не менее 58 г белка в день. Это эквивалентно белку, содержащемуся примерно в 200 г куриной грудки или 240 г ореховой смеси.

В периоды роста, например в детстве, беременности и кормлении грудью, потребности в белке относительно высоки.Кроме того, в пожилом возрасте соотношение белков и энергии начинает увеличиваться. Это означает, что нам требуется такое же количество белка, но меньше энергии (или калорий) из-за снижения скорости метаболизма и более малоподвижного образа жизни. 1

Таблица 3. Диетические справочные значения для стадий жизни. 1 BW: масса тела.

Справочное значение

г / сутки 70 кг взрослые

Детство (12 мес — 17 лет)

1.14 — 0,83 г / кг BW

Взрослые (18-65 лет)

0,83 г / кг BW

58 г

Пожилые (> 65 лет)

1 г / кг BW

70 г

Беременность

0,83 г / кг BW

58 г

+ 1г в сутки

59 г

+ 9 г в сутки

67 г

+ 28 г в сутки

86 г

Грудное вскармливание (0-6 месяцев)

+ 19 г в сутки

77 г

Грудное вскармливание (> 6 месяцев)

+13 г в сутки

71 г

Сколько белка мы едим каждый день?

В целом европейцы потребляют достаточно белка, а дефицит белка в большинстве развитых стран встречается редко (диаграмма 3).Поскольку диета европейцев уже превышает требуемый уровень, EFSA не рекомендует увеличивать текущее потребление белка. 1

Рисунок 3. Потребление белка в европейских странах. 1

Каковы преимущества протеина для здоровья?

Потребление достаточного количества белка для удовлетворения потребностей нашего организма важно для многих функций организма. Однако есть данные, позволяющие предположить, что в определенных ситуациях увеличение потребления белка выше требуемого уровня может принести дополнительную пользу для здоровья.

Белок и контроль веса

Было показано, что употребление в пищу продуктов, богатых белком, усиливает чувство сытости (также известное как сытость) больше, чем продукты с высоким содержанием жиров или углеводов. Краткосрочные исследования показали, что диета с высоким содержанием белка (например, 1,2 — 1,6 г / кг в день; 84-112 г в день для взрослого человека весом 70 кг) может помочь снизить общее потребление калорий и ускорить потерю веса. 5 Однако доказательства долгосрочного поддержания веса менее очевидны. 5 Как и все диеты, диета с высоким содержанием белка эффективна только в том случае, если ее придерживаются, что может быть трудным для некоторых людей, а низкая приверженность может частично объяснить ограниченную пользу, наблюдаемую при долгосрочном поддержании веса. 5

Белок и саркопения

Саркопения — это заболевание, характеризующееся прогрессирующей потерей мышечной массы и физических функций, которое обычно ассоциируется у пожилых людей. Саркопения связана с повышенной слабостью, риском падений, функциональным снижением и даже ранней смертью. 6 Поскольку белок необходим для восстановления и поддержания мышечной массы, неудивительно, что низкое потребление белка связано с повышенным риском развития саркопении. 6 Точно так же увеличение потребления белка, а также увеличение физической активности может помочь сохранить мышечную массу и силу с возрастом, снижая риск саркопении и заболеваний скелета.

Белок и спортивные результаты

Белок уже давно ассоциируется со спортивной продуктивностью.Белок играет ключевую роль в восстановлении и укреплении мышечной ткани после тренировки. Хотя белок имеет решающее значение для наращивания мышечной массы, для получения максимальной пользы его следует рассматривать в контексте всей диеты, которая включает правильное количество углеводов, жиров, витаминов и минералов. Оптимальное потребление белка будет зависеть от типа (например, тренировки на выносливость или сопротивление), продолжительности и интенсивности упражнений, причем большее количество не всегда означает лучший результат. Потребление белка 1,4–2,0 г на кг массы тела в день (например,грамм. 98 — 140 г в день для взрослого человека весом 70 кг) считается достаточным для удовлетворения потребностей большинства людей, занимающихся физическими упражнениями. 7 Спортсмены должны стремиться к достижению потребления белка за счет сбалансированного питания, при этом протеиновые добавки используются для людей, которым необходимо поддерживать высокий уровень белка, но ограничивать общее потребление калорий.

Что произойдет, если вы съедите слишком много белка?

Недостаточно доказательств для установления порога потребления белка, и EFSA заявило, что потребление белка в два раза превышает DRV (1.7 г / кг в день или 119 г в день для взрослого человека весом 70 кг) по-прежнему считается безопасным при нормальных условиях. 1 Для людей с заболеванием почек избыток белка может быть проблемой, и этим людям следует проконсультироваться с зарегистрированным диетологом или терапевтом, прежде чем повышать уровень белка.

Увеличение веса

Существует распространенное заблуждение, что нельзя набрать вес, употребляя белок. Это неправда, так же, как углеводы и жиры, когда они потребляются во время избытка калорий, избыток белка может превращаться в жировые отложения, что приводит к увеличению веса.Когда дело доходит до поддержания веса, самое главное — сохранять энергетический баланс.

Красное и обработанное мясо и риск рака

Белок необходим для хорошего здоровья, но некоторые продукты с высоким содержанием белка могут быть лучше для нашего здоровья, чем другие. В частности, потребление большого количества красного и обработанного мяса связано с повышенным риском некоторых видов рака. 8 Красное мясо является хорошим источником белка, а также многих других важных питательных веществ, таких как железо, витамин B 12 и цинк, и его не обязательно полностью избегать, чтобы снизить риск.Всемирный фонд исследования рака рекомендует нам стараться потреблять не более трех порций (около 350-500 г вареной массы) красного мяса в неделю и очень мало обработанного мяса. 8

Устойчивость белка

Выбор продуктов питания, который мы делаем, влияет не только на наше здоровье, но и на окружающую среду. В целом, белки животного происхождения, такие как говядина, молочные продукты и баранина, оказывают более сильное воздействие на окружающую среду (т. Е. Используют больше ресурсов и производят больше парниковых газов) по сравнению с растительными источниками, такими как соя, горох и чечевица (рисунок 4). 9 Хотя нет необходимости и не рекомендуется полностью избегать продуктов животного происхождения, изменение рациона питания с включением большего количества источников белка растительного происхождения может принести пользу нашему здоровью и планете. 10 Устойчивое питание — это больше, чем просто выбор экологически чистых продуктов, богатых белком. Дополнительные советы о том, как можно вести более устойчивый образ жизни, см. В советах по здоровому и рациональному питанию и советах по сокращению пищевых отходов.

Рисунок 4 . Содержание белка и выбросы парниковых газов (ПГ) в различных пищевых продуктах. 9

Заключение

Белок необходим для жизни; он поставляет незаменимые аминокислоты, необходимые для роста и поддержания наших клеток и тканей. Наша потребность в белке зависит от нашего жизненного цикла, и большинство европейцев потребляют достаточно, чтобы удовлетворить свои потребности. Поскольку большинство людей придерживаются разнообразной диеты, качество и усвояемость белков, которые они едят, не должны вызывать беспокойства, если общее количество белка удовлетворяет их ежедневные потребности. Поскольку мы едим продукты, а не питательные вещества, мы должны выбирать продукты, богатые белком, которые не только содержат незаменимые аминокислоты, но и поддерживают здоровую и устойчивую диету.

Список литературы

  1. EFSA (2012). Европейское агентство по безопасности пищевых продуктов, Научное заключение о диетических референсных значениях белка. EFSA Journal 2012; 10 (2): 2557
  2. База данных Великобритании по составу пищевых продуктов.
  3. Консультация, F.E., 2011. Оценка качества диетического белка в питании человека. FAO Food Nutr. Пап, 92, стр. 1-66.
  4. Phillips, S.M., 2017. Современные концепции и нерешенные вопросы в отношении диетических белков и добавок у взрослых.Границы питания, 4, с.13.
  5. Leidy, H.J., Clifton, P.M., Astrup, A., Wycherley, T.P., Westerterp-Plantenga, M.S., Luscombe-Marsh, N.D., Woods, S.C. и Mattes, R.D., 2015. Роль белка в потере и поддержании веса. Американский журнал клинического питания, 101 (6), стр.132
  6. .

  7. Cruz-Jentoft AJ, Sayer AA (2019). Саркопения. Ланцет. 393 (10191): 2636-2646.
  8. Jager R., Kerksick, C.M., Campbell, B.I., Cribb, P.J., Wells, S.Д., Сквиат, Т.М., Пурпура, М., Зигенфус, Т.Н., Феррандо, А.А., Арент, С.М. и Смит-Райан, A.E., 2017. Позиция Международного общества спортивного питания: белок и упражнения. Журнал
  9. Всемирный фонд исследований рака / Американский институт исследований рака. Постоянное обновление отчета экспертов проекта за 2018 год. Мясо, рыба и молочные продукты и риск рака.
  10. Пур Дж., Немечек Т. (2018) Снижение воздействия пищевых продуктов на окружающую среду за счет производителей и потребителей.Science Vol. 360, Issue 6392, pp. 987-992
  11. ФАО и ВОЗ. 2019. Устойчивое здоровое питание — Руководящие принципы. Рим

    Насколько важен белок? — Медицинские партнеры Северо-Западного Арканзаса

    Белок — важное питательное вещество для всех, а не только для спортсменов и бодибилдеров. Это не значит, что вам нужно начинать пить протеиновые коктейли каждый день. Большинство людей могут получить необходимый им белок из здорового и сбалансированного питания. Вот почему так важен белок, сколько белка вам нужно каждый день и есть отличные продукты, богатые белком.

    Что такое белок?

    Белок — один из трех основных макроэлементов (остальные — углеводы и жиры). Макроэлементы — это химические соединения, которые человек потребляет больше всего и которые обеспечивают нас большей частью нашей энергии. Белки состоят из аминокислот и являются наиболее часто встречающимися молекулами в клетках.

    Наш организм может производить большую часть аминокислот, необходимых для поддержания здоровья, но есть девять аминокислот, которые мы не можем производить и должны потреблять с пищей.Девять аминокислот, которые наш организм не может производить, называются незаменимыми аминокислотами.

    Почему важен белок?

    Люди не могут выжить без всех девяти незаменимых аминокислот. Белок необходим для построения костей и тканей тела, таких как мышцы, но белок делает гораздо больше. Белок участвует практически во всех процессах клетки. Он участвует в метаболических реакциях, иммунном ответе, белок обеспечивает источник энергии, помогает в восстановлении клеток, формирует клетки крови и многое другое.

    Сколько белка вам нужно?

    Белок обеспечивает такую ​​же энергетическую ценность, как и углеводы. Однако организм не хранит белки так же, как углеводы и жиры. Это означает, что вам нужно потреблять белок каждый день. Однако существуют разные мнения о том, сколько белка вам нужно каждый день. Отчасти это связано с рядом факторов, которые влияют на количество белка, необходимое вашему организму.

    Количество потребляемой вашим телом энергии, ваш возраст, пол, масса тела, уровень активности, состояние здоровья и ряд других факторов влияют на количество необходимого вам белка.Это затрудняет попытки установить точное количество белка, которое человек должен потреблять ежедневно.

    Вы можете рассчитать, сколько протеина вам нужно каждый день, с помощью этого интерактивного калькулятора рекомендованной диеты от Министерства сельского хозяйства США.

    Если вы спортсмен или каждый день занимаетесь укрепляющими упражнениями, вам может потребоваться больше белка, чем рекомендуется в среднем.

    Какие источники белка являются лучшими?

    Многие люди ищут добавки, чтобы увеличить количество потребляемого белка, но большинство людей могут получать белок, в котором они нуждаются каждый день, из пищи.Пища, которую вы едите, также содержит другие важные питательные вещества.

    Как растения, так и животные являются хорошими источниками белка. Однако важно знать, что, хотя многие растения обеспечивают белок, большинство из них не содержат всех незаменимых аминокислот. По данным Совета по пищевым продуктам и питанию Института медицины, мясо, птица, рыба, яйца, молоко, сыр, йогурт, киноа и соевые бобы являются источником полноценного белка, что означает, что они содержат все девять незаменимых аминокислот.

    Многие продукты, полученные из растений, включая фрукты, бобовые, семена, орехи, цельнозерновые, злаки, содержат белок.Однако, поскольку растительные белки не являются полноценными белками, важно знать, какие аминокислоты содержат эти продукты, особенно если вы не едите мясо или молочные продукты. Вы должны употреблять разнообразные растительные белки, чтобы получать все незаменимые аминокислоты.

    Как показывает опыт, если вы получаете половину белка из животных источников, эти полноценные белки означают, что вы можете получить остальную часть белка из растительных источников, не беспокоясь о том, насколько полны эти растительные белки.В растительном белке меньше насыщенных жиров, чем в животном, поэтому увеличение доли растительных источников полезно для здоровья.

    Необходимо есть разнообразную пищу, даже если вы едите продукты, содержащие полноценный белок. Хотя белок является важным питательным веществом, существует множество питательных веществ, которые не менее важны для поддержания хорошего здоровья. Здоровая диета имеет решающее значение для поддержания хорошего здоровья, равно как и регулярное общение с лечащим врачом. Запишитесь на прием к врачу MANA сегодня!

    Функции белков в организме — питание человека [УСТАРЕЛО]

    Белки являются «рабочими лошадками» тела и участвуют во многих функциях организма.Белки бывают всех размеров и форм, и каждый из них специально структурирован для своей конкретной функции.

    Структура и движение

    Рисунок 6.9 Структура коллагена

    Тройная спираль коллагена от Невита Дилмена / CC BY-SA 3.0

    В организме человека было обнаружено более сотни различных структурных белков, но наиболее распространенным является коллаген, который составляет около 6 процентов от общей массы тела. Коллаген составляет 30 процентов костной ткани и включает большое количество сухожилий, связок, хрящей, кожи и мышц.Коллаген — это прочный волокнистый белок, состоящий в основном из глицина и пролина. Внутри его четвертичной структуры три пептидных нити скручиваются друг с другом, как веревка, а затем эти коллагеновые нити перекрываются друг с другом. Эта высокоупорядоченная структура даже прочнее, чем стальные волокна того же размера. Коллаген делает кости крепкими, но гибкими. Волокна коллагена в дерме кожи придают ей структуру, а сопутствующие фибриллы белка эластина делают ее гибкой. Зажмите кожу на руке и отпустите; белки коллагена и эластина в коже позволяют ей вернуться к своей первоначальной форме.Гладкомышечные клетки, которые выделяют белки коллагена и эластина, окружают кровеносные сосуды, придавая им структуру и способность растягиваться назад после того, как через них прокачивается кровь. Еще один сильный волокнистый белок — кератин, из которого состоят кожа, волосы и ногти. Плотно упакованные коллагеновые фибриллы в сухожилиях и связках обеспечивают синхронные механические движения костей и мышц и способность этих тканей возвращаться назад после завершения движения.

    Ферменты

    Хотя белки в наибольшем количестве содержатся в соединительных тканях, таких как кости, их наиболее необычная функция — это ферменты.Ферменты — это белки, которые проводят определенные химические реакции. Задача фермента — обеспечить место для химической реакции и снизить количество энергии и время, необходимое для того, чтобы эта химическая реакция произошла (это известно как «катализ»). В среднем каждую секунду в клетках происходит более ста химических реакций, и для большинства из них требуются ферменты. Одна только печень содержит более тысячи ферментных систем. Ферменты специфичны и будут использовать только определенные субстраты, которые подходят их активному сайту, подобно тому, как замок может быть открыт только с помощью определенного ключа.Почти каждая химическая реакция требует определенного фермента. К счастью, фермент может снова и снова выполнять свою роль катализатора, хотя в конечном итоге он разрушается и восстанавливается. Все функции организма, включая расщепление питательных веществ в желудке и тонком кишечнике, преобразование питательных веществ в молекулы, которые клетка может использовать, и построение всех макромолекул, включая сам белок, включают ферменты (см. Рисунок 6.10 «Роль ферментов в переваривании углеводов») .

    Рисунок 6.Роль 10 ферментов в переваривании углеводов

    Гормоны

    Белки отвечают за синтез гормонов. Гормоны — это химические сообщения, производимые железами внутренней секреции. Когда эндокринная железа стимулируется, она выделяет гормон. Затем гормон транспортируется с кровью к своей клетке-мишени, где он передает сообщение, чтобы инициировать определенную реакцию или клеточный процесс. Например, после еды уровень глюкозы в крови повышается. В ответ на повышение уровня глюкозы в крови поджелудочная железа выделяет гормон инсулин.Инсулин сообщает клеткам организма, что глюкоза доступна и может забирать ее из крови и хранить или использовать для производства энергии или создания макромолекул. Основная функция гормонов — включать и выключать ферменты, поэтому некоторые белки могут даже регулировать действие других белков. Хотя не все гормоны состоят из белков, многие из них таковы.

    Жидкостный и кислотно-щелочной баланс

    Правильное потребление белка позволяет основным биологическим процессам организма поддерживать статус-кво в изменяющейся окружающей среде.Баланс жидкости относится к поддержанию распределения воды в организме. Если слишком много воды в крови внезапно попадает в ткань, это приводит к отеку и, возможно, к гибели клеток. Вода всегда течет из области с высокой концентрацией в область с низкой концентрацией. В результате вода перемещается в области с более высокими концентрациями других растворенных веществ, таких как белки и глюкоза. Чтобы вода равномерно распределялась между кровью и клетками, белки постоянно циркулируют в крови в высоких концентрациях.Самый распространенный белок в крови — это белок в форме бабочки, известный как альбумин. Присутствие альбумина в крови делает концентрацию белка в крови похожей на таковую в клетках. Таким образом, обмен жидкости между кровью и клетками не является экстремальным, а скорее сводится к минимуму, чтобы сохранить статус-кво.

    Рисунок 6.11 Белковый альбумин

    PDB 1o9x EBI Джавахара Сваминатана и сотрудников MSD из Европейского института биоинформатики / Public Domain Белок в форме бабочки, альбумин, выполняет множество функций в организме, включая поддержание жидкого и кислотно-щелочного баланса и транспортировку молекул.

    Белок также необходим для поддержания правильного баланса pH (мера того, насколько кислым или основным является вещество) в крови. PH крови поддерживается между 7,35 и 7,45, что является слегка щелочным. Даже небольшое изменение pH крови может повлиять на функции организма. Напомним, что кислая среда может вызвать денатурацию белка, что останавливает функционирование белков. В организме есть несколько систем, которые удерживают pH крови в пределах нормы, чтобы этого не происходило. Один из них — циркулирующий альбумин.Альбумин имеет слабую кислотность и, поскольку он отрицательно заряжен, уравновешивает множество положительно заряженных молекул, таких как протоны (H +), кальций, калий и магний, которые также циркулируют в крови. Альбумин действует как буфер против резких изменений концентраций этих молекул, тем самым уравновешивая pH крови и поддерживая статус-кво. Белок гемоглобин также участвует в кислотно-щелочном балансе, связывая и высвобождая протоны.

    Транспорт

    Альбумин и гемоглобин также играют роль в молекулярном транспорте.Альбумин химически связывается с гормонами, жирными кислотами, некоторыми витаминами, необходимыми минералами и лекарствами и переносит их по кровеносной системе. Каждый эритроцит содержит миллионы молекул гемоглобина, которые связывают кислород в легких и транспортируют его ко всем тканям организма. Плазматическая мембрана клетки обычно не проницаема для больших полярных молекул, поэтому для доставки необходимых питательных веществ и молекул в клетку в клеточной мембране существует множество транспортных белков. Некоторые из этих белков являются каналами, которые позволяют определенным молекулам входить и выходить из клеток.Другие действуют как такси с односторонним движением и требуют энергии для работы.

    Защита

    Рисунок 6.12 Белки антител

    Абаговомаб (моноклональное антитело) по Blake C / CC BY-SA 3.0

    Рисунок 6.13 Антигены

    Цепи антител от Fred the Oyster / Public Domain

    Белок антитела состоит из двух тяжелых цепей и двух легких цепей. Вариабельная область, которая отличается от одного антитела к другому, позволяет антителу распознавать соответствующий ему антиген.

    Ранее мы обсуждали, что прочные волокна коллагена в коже обеспечивают ей структуру и поддержку.Плотная сеть коллагеновых волокон кожи также служит преградой для вредных веществ. Функции атаки и разрушения иммунной системы зависят от ферментов и антител, которые также являются белками. Фермент лизоцим выделяется со слюной и атакует стенки бактерий, вызывая их разрыв. Определенные белки, циркулирующие в крови, могут быть направлены на создание молекулярного ножа, который пронзает клеточные мембраны чужеродных захватчиков. Антитела, выделяемые лейкоцитами, исследуют всю систему кровообращения в поисках вредных бактерий и вирусов, которые можно окружить и уничтожить.Антитела также запускают другие факторы иммунной системы для поиска и уничтожения нежелательных злоумышленников.

    Заживление ран и регенерация тканей

    Белки участвуют во всех аспектах заживления ран, процесса, который проходит в трех фазах: воспалительной, пролиферативной и ремоделирующей. Например, если вы шили и укололи палец иглой, ваша плоть покраснела бы и воспалилась. Через несколько секунд кровотечение прекратится. Процесс заживления начинается с белков, таких как брадикинин, которые расширяют кровеносные сосуды в месте повреждения.Дополнительный белок, называемый фибрином, помогает защитить тромбоциты, которые образуют сгусток, чтобы остановить кровотечение. Затем, в фазе пролиферации, клетки перемещаются и восстанавливают поврежденную ткань, устанавливая новые коллагеновые волокна. Волокна коллагена помогают сблизить края раны. В фазе ремоделирования откладывается больше коллагена, образуя рубец. Рубцовая ткань только на 80 процентов функциональна, чем нормальная неповрежденная ткань. Если в диете недостаточно белка, процесс заживления ран заметно замедляется.

    В то время как заживление ран происходит только после получения травмы, в организме продолжается другой процесс, называемый регенерацией тканей. Основное различие между заживлением ран и регенерацией тканей заключается в процессе восстановления точной структурной и функциональной копии утраченной ткани. Таким образом, старая умирающая ткань заменяется не рубцовой тканью, а совершенно новой, полностью функциональной тканью. Некоторые клетки (например, клетки кожи, волос, ногтей и кишечника) имеют очень высокую скорость регенерации, в то время как другие (например, клетки сердечной мышцы и нервные клетки) не регенерируют на каких-либо заметных уровнях.Регенерация тканей — это создание новых клеток (деление клеток), для чего требуется множество различных белков, включая ферменты, синтезирующие РНК и белки, транспортные белки, гормоны и коллаген. В волосяном фолликуле клетки делятся, и волосы растут в длину. Рост волос в среднем составляет 1 сантиметр в месяц, а ногтей — около 1 сантиметра каждые сто дней. Клетки, выстилающие кишечник, восстанавливаются каждые три-пять дней. Неадекватные белковые диеты ухудшают регенерацию тканей, вызывая множество проблем со здоровьем, включая нарушение переваривания и усвоения питательных веществ и, что наиболее заметно, роста волос и ногтей.

    Производство энергии

    Некоторые аминокислоты в белках можно разобрать и использовать для производства энергии (Рисунок 6.14 «Аминокислоты, используемые для получения энергии»). Только около 10 процентов пищевых белков катаболизируются каждый день для производства клеточной энергии. Печень способна расщеплять аминокислоты до углеродного скелета, которые затем могут быть включены в цикл лимонной кислоты. Это похоже на то, как глюкоза используется для производства АТФ. Если диета человека не содержит достаточного количества углеводов и жиров, его организм будет использовать больше аминокислот для производства энергии, что ставит под угрозу синтез новых белков и разрушает мышечные белки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *