Четверг, 5 декабря

Процессы катаболизма: Анаболизм и катаболизм. Тема: Здоровье | by Eggheado | Eggheado: Health

Анаболизм и катаболизм. Тема: Здоровье | by Eggheado | Eggheado: Health

Человек, занимающийся спортом, должен хотя бы отдаленно иметь представление о процессах, происходящих в его организме. Это позволит ему составить правильный режим питания и тренировок, что, в свою очередь, приведет к достижению отличного результата. Сегодня мы поговорим о важнейшем процессе в организме человека — обмене веществ и его составляющих, анаболизме и катаболизме.

Итак, обмен веществ или метаболизм — это совокупность химических реакций, протекающих в организме, обеспечивающих его рост, развитие и процессы жизнедеятельности, взаимодействие с окружающей средой и т.д.

Человек получает готовые органические вещества с пищей, но чтобы они смогли участвовать в обмене их необходимо расщепить на элементарные частицы, т.к. организму необходимо использовать во всех процессах свои, присущие только ему жиры, белки и углеводы. Эти процессы происходят в пищеварительной системе.

Белки расщепляются ферментами до аминокислот. В клетках из них строятся белки тела. Белки входят в состав клеток, участвуют в процессах свертываемости крови, транспортировки газов, входят в состав костей. Они способны к окислению с выделением энергии, которая в дальнейшем будет использоваться организмом.

Жиры распадаются в организме на глицерин и жирные кислоты. Образуется жир, характерный для организма. Далее он отправляется в депо клетки, там он используется как запасное вещество и строительный материал. Жиры входят в состав мембран клеток, выполняют защитную функцию, сохраняют тепло. Более того, жиры — источник энергии, они способны выделять при окислении больше энергии, чем белки и углеводы.

Углеводы расщепляются в организме до глюкозы и других простых углеводов. Издержки сахаров превращаются в гликоген и другие соединения, а остальные распределяются между всеми клетками. Глюкоза — отличный источник энергии.

Одной из составляющих обмена веществ является анаболизм, или по-другому, пластический обмен.

Анаболизм — это совокупность химических реакций, направленных на образование клеток и тканей. В результате образуется новый материал для построения клеток и их роста, а так же запасается энергия.

Примерами анаболизма могут служить следующие процессы: создание новых клеток или мышечных волокон, синтез белков и т.д.

Простыми словами анаболизм — это создание новых веществ или тканей в организме.

Анаболизм неразрывно связан с обратным ему, катаболизмом, т.е. разрушением на более простые вещества.

Этот термин приобрел негативную окраску среди спортсменов и это совсем не правильно. Ведь расщепление жиров и углеводов с дальнейшим выделением энергии — это тоже катаболизм. А эта энергия расходуется при работе мышц на тренировках и т.д.

Также в ходе катаболизма происходит распад устарелых тканей и клеточных элементов. В дальнейшем продукты этого распада удаляются из организма. Именно катаболизм и анаболизм имеют большое значение для атлета, серьезно относящегося к своей спортивной карьере. Эти процессы протекают в организме одновременно, но в разные периоды времени один процесс преобладает над другим. Например, после еды преобладают анаболические процессы, после сна — катаболические. Более того первая стадия анаболизма является последней стадией катаболизма.

Но катаболизм действительно может оказывать негативное влияние на результаты спортсмена, т.к. в ходе него разрушается мышечная ткань. Разнообразные диеты, стрессы, недосыпание усиливают катаболические процессы в организме спортсмена.

Уменьшить это разрушительное влияние поможет правильно питание, питание до и после тренировки, употребление ВСАА, протеина, а так же пищи, богатой белком.

По материалам: paladincenter.ru

Процессы катаболические — Справочник химика 21








    Ферментативное поглощение Oj, сопряженное с запасанием энергии, подразделяется на процессы, не связанные с фосфорилированием, и процессы, сопровождающиеся фосфорилированием. В первом случае окисление, сопряженное с запасанием энергии, не связано с трансформированием свободной энергии в форму макроэргических фосфатных связей. Известно, что в клетке существуют две универсальные формы энергии химическая и электрохимическая (АДн» )- Один из путей получения энергии в форме трансмембранного электрохимического градиента Н» связан с переносом электронов на О2. Энергия в этой форме может использоваться клеткой для совершения разного вида работы (см. рис. 27). Химическая энергия заключена в основном в соединениях, содержащих макроэргические фосфатные связи, и в первую очередь в молекулах АТФ. Но на промежуточных этапах катаболических процессов, связанных в конечном итоге с поглощением О2, образуются метаболиты, содержащие богатые энергией связи, например тиоэфирные ( -S —КоА). Эти соединения могут непосредственно обеспечивать энергией некоторые биосинтетические процессы. [c.345]

    В благоприятных условиях, т. е. в среде, где есть водный раствор питательных веществ, а также соответствующие физические и химические факторы (температура, pH, О2) в клетках микроорганизмов начинаются ферментативные процессы, обмен веществ с окружающей средой. Из веществ, проникших в клетку, образуются внутриклеточные вещества и структурные элементы. Одновременно идут процессы распада веществ — диссимиляции. Если анаболические процессы преобладают над катаболическими, наблюдается рост клетки, увеличение ее размеров. Достигнув определенных размеров в соответствующей фазе развития, клетка может начать размножаться. Скорость размножения зависит как от видовых свойств культуры, так и от условий окружающей среды. В благоприятных условиях каждое следующее поколение у дрожжевых клеток появляется через часовой интервал, а у некоторых бактерий даже через каждые 20—40 мин. Однако обычно размножение происходит гораздо медленнее, так как в среде роста всегда есть ограничивающие (лимитирующие) факторы нехватка какого-либо питательного вещества, изменение температуры, pH, образование токсических веществ, избыток клеточной массы на единицу объема и т. д. [c.61]








    Таким образом, обмен веществ тесно связан с обменом энергии. Реакции катаболизма, сопровождающиеся уменьщением свободной энергии (—АО), являются донорами не только структурных предшественников, но и обеспечивают энергетически процессы анаболизма (+Аб). Напомним, что если АС отрицательно, то реакция протекает самопроизвольно и сопровождается уменьшением свободной энергии. Такие реакции называются экзергоническими, к ним относятся, как правило, катаболические превращения. Если же значение АО положительно, то реакции будут протекать только при поступлении свободной энергии извне и называться эндергоническими (анаболические процессы). При АО, равном нулю, система находится в равновесии. [c.190]

    Основные метаболиты, образующиеся в процессе катаболических превращений фенилаланина и тирозина, приведены ниже  [c.381]

    Совокупность биохимических процессов, протекающих в клетках и обеспечивающих их жизнедеятельность, называется обменом веществ или метаболизмом. В клетку постоянно поступают метаболиты, которые подвергаются определенным превращениям, вовлекаясь в обменные процессы. Эти процессы можно разделить на два типа анаболические, связанные с синтезом новых структур, и катаболические — реакции деградации, распада сложных веществ до более простых. Процессы анаболизма и катаболизма связаны друг с другом и в физиологических условиях протекают строго согласованно. Кроме обмена химических веществ, в клетках постоянно про- [c.14]

    Основным катаболическим процессом деструкции глюкозы в клетках животных и человека является последовательность ряда реакций ее окисления, в результате которьгх в анаэробных условиях глюкоза превращается в лактат, а в аэробных — в конечные продукты СО2 и воду. Ниже приведена биологическая значимость окислительных превращений глюкозы  [c.242]

    Проблему обратимости катаболических реакций природа решила путем сопряжения биосинтетических реакций с реакцией расщепления АТР, о чем уже шла речь при обсуждении вопроса о сопряжении гидролиза АТР С одной из биосинтетических последовательностей (гл. 7, разд. Е). Наряду с этим для осуществления реакций биосинтеза живые клетки используют также и другие способы утилизации свободной энергии, выделяемой при гидролизе АТР. Смысл многих, на первый взгляд непонятных стадий метаболизма может стать понятным, если иметь в виду, что они предназначены для процессов сопряжения расщепления АТР с биосинтезом. Ниже рассмотрено несколько наиболее важных механизмов сопряжения этого типа. [c.459]

    Промежуточный метаболизм аминокислот белковых молекул, как и других питательных веществ в живых организмах, включает катаболические (распад до конечных продуктов обмена), анаболические (биосинтез аминокислот) процессы, а также ряд других специфических превращений, сопровождающихся образованием биологически активных соединений. Условно промежуточный метаболизм аминокислот можно разделить на общие пути обмена и индивидуальные превращения отдельных аминокислот (рис. 12.2). [c.431]

    В клетке нет ничего статичного. Структуры постоянно создаются и снова разрушаются. Всё с большей или меньшей скоростью подвергается взаимопревращению. Гидролитические ферменты атакуют все полимеры, из которых состоят клетки, а активные катаболические реакции разрушают образующиеся в результате таких атак мономеры. Мембранные структуры также подвергаются изменениям в результате гидроксилирования и гликозилирования. Эти реакции являются источником движущей силы, обеспечивающей перемещение материала, образующегося в результате распада мембран, на наружную поверхность клетки. В это же время другие процессы, включая процессы распада под действием лизосомных ферментов, дают возможность материалу, из которого строятся мембраны, вновь проникать в клетку. Окислительные процессы приводят к разрушению веществ гидрофобной природы, таких, как стерины и жирные кислоты мембранных липидов, и к их превращению в более легко растворимые вещества, которые затем распадаются н подвергаются полному окислению. [c.502]

    Эндотермические процессы ассимиляции питательных веществ, идущие с поглощением энергии, часто называют анаболическими, а экзотермические процессы диссимиляций, связанные с выделением энергии,— катаболическими. Продукты, образующиеся в результате этих процессов, являются метаболитами, а все эти процессы в целом составляют обмен веществ — метаболизм. Синтез клеточных компонентов клетки обеспечивает конструктивный метаболизм, а энергию, необходимую для этих процессов,— энергетический метаболизм. [c.27]

    Таким образом, взаимопревращение метаболитов, образующихся при катаболизме веществ разных классов, тесно связано с энергетическим обменом. Известно, что одним из энергоемких процессов в организме является биосинтез белка, и становится понятна в этом отношении интеграция этого процесса с катаболическими реакциями превращения глюкозы и триацилглицерола — основными источниками синтеза АТФ в процессе окислительного фосфорилирования. В свою очередь, все реакции углеводного и липидного обмена катализируются ферментами, являющимися белками. Следует отметить, что единство метаболических процессов находится под воздействием условий внешней среды и способность живых организмов сохранять постоянство внутренней среды — биохимический гомеостаз — при помощи механизмов саморегуляции является одним из важнейших свойств всех живых систем.[c.449]

    Обмен белков занимает особое место в многообразных превращениях веществ, характерных для всех живых организмов. Выполняя ряд уникальных функций, свойственных живой материи, белки определяют не только микро- и макроструктуру отдельных субклеточных образований, специфику организации клеток, органов и целостного организма (пластическая функция), но и в значительной степени динамическое состояние между организмом и окружающей его средой. Белковый обмен строго специфичен, направлен и настроен, обеспечивая непрерывность воспроизводства и обновления белков организма. В течение всей жизнедеятельности в организме постоянно и с высокой скоростью совершаются два противоположных процесса распад, расщепление органических макромолекул и надмолекулярных структур и синтез этих соединений. Эти процессы обеспечивают катаболические реакции и создание сложной структурной организации живого из хаоса веществ окружающей среды, причем ведущую роль в последнем случае играют именно белки. Все остальные виды обмена подчинены этой глобальной задаче живого—самовоспроизведению себе подобных путем программированного синтеза специфических белков. Для осуществления этого используются энергия обмена углеводов и липидов, строительный материал в виде углеродных остатков аминокислот, промежуточных продуктов метаболизма углеводов и др. [c.409]

    Биохимические функции. Глюкокортикоиды стимулируют катаболические процессы в организме, преимущественно в мышечной и жировой тканях. Новосинтезированные гормоны быстро секретируются в кровь и связываются со специфическим белком — транскортином. Образованный макромолеку-лярный комплекс переносится к клеткам-мишеням, где происходит его диссоциация и реализация действия гормонов. Глюкокортикоиды усиливают распад белков, повышают содержание аминокислот в крови и аминного азота в моче. Данные гормоны ингибируют синтез нуклеиновых кислот во всех тканях, кроме печени. Их действие на углеводный обмен проявляется прежде всего в увеличении глюкозы в крови за счет активации глюконеогенеза в печени. В липидном обмене глюкокортикоиды стимулируют интенсификацию липолиза, а также ингибируют синтез жирных кислот в печени. [c.159]

    Процесс распада жирных кислот локализован в клетке и включает несколько этапов. На первом из них жирная кислота с помощью соответствующего фермента превращается в КоА-про-изводное, которое окисляется в Р-положении с последующим отщеплением ацетил-КоА. Другим продуктом реакции является КоА-производное жирной кислоты, укороченное на два углеродных атома. Ацетил-КоА по катаболическим каналам используется для получения клеткой энергии. [c.92]

    Помимо адениловых нуклеотидов в регулировании энергетических процессов активную роль играют система НАД(Ф)» / /НАД(Ф) Н2-коферментов и величина трансмембранного электрохимического градиента ионов водорода в виде обоих его составляющих и АрН). Преобладание аллостерического взаимодействия восстановленной или окисленной форм НАД(Ф) с ферментами катаболического пути приводит соответственно к понижению или повышению их активности. Достижение определенного порогового значения Арн+ на энергопреобразующей мембране служит определенным сигналом, тормозящим поступление ионов водорода против градиента. [c.124]

    Превращение органических соединений в клетке осуществляется, как правило, в виде цепи или последовательности реакций, которые называются метаболическими путями, а вовлекаемые в такие реакции соединения — метаболитами. В классической биохимии метаболические пути разделяются на два типа катаболические и анаболические. Катаболические пути — это процессы ферментативной деградации, в ходе которых крупные органические молекулы разрушаются (обычно в окислительных реакциях) до простых клеточных компонентов с одновременным выделением свободной химической энергии. Эта энергия используется затем организмом для поддержания жизнедеятельности, роста и репликации, а также преобразуется в другие формы энергии — механическую, электрическую и тепловую. [c.189]

    Оценивая значение ЦТК как процесса катаболических превращений ацетила, необходимо отметить его анаболические функции. Следовательно, ЦТК относится к амфиболическим путям метаболизма, т. е. выполняет не только функции окислительного катаболизма, но и связан с анаболическими процессами поставляет промежуточные метаболиты для реакций биосинтеза, например сукцинил-КоА — для синтеза гема, а-кетоглутарат-глутаминовой кислоты и др. (см. рис. 19.2). [c.265]

    Аминокислоты, не использованные для биосинтетических процессов, подвергаются катаболизму, а из углеродных цепей аминокислот синтезируются вещества, способные резервировать энергию — глюкоза (гликоген) и липиды (рис. 24.5). Общими для всех аминокислот являются катаболические превращения по a-NHj- и а-СООН-группам. К общим реакциям относится так- [c.370]

    Часть свободных аминокислот попадает в кровь в процессе пищеварения, другая — эндогенная — часть образуется в результате распада белков тканей. В сыворотке содержание свободных аминокислот составляет 2,7—4,6 ммоль/л. Аминокислотный спектр сыворотки соответствует аминокислотному спектру свободных аминокислот в органах и тканях, за исключением более низкого содержания аспартата и глутамата и повышенного содержания аспарагина и глутамина (25%). Изменение содержания общего аминного азота в сыворотке и моче может служить одним из показателей превалирования катаболических или анаболических процессов в организме, сопровождающих ряд патологических состояний. [c.409]

    Некоторые катаболические процессы зависят от ADP. Однако при высокой интенсивности метаболизма концентрация ADP может сильно уменьшиться из-за почти полного его фосфорилирования с образованием АТР. В этих условиях лимитирующими в соответствующих последовательностях реакций могут стать реакции, использующие ADP. Снижение уровня реагента способно привести также к полному изменению картины метаболизма. Так, если дрожжи лишены кислорода, то происходит накопление восстановленного кофермента NADH, который восстанавливает пировиноградную кислоту до молочной (гл. 7, разд. А, 6), т. е. наблюдается переход от окислительного метаболизма к брожению. [c.65]

    Биодеградация — это процесс разрушения микроорганизмами веществ, загрязняющих окружающую среду. Многие бактерии рода Pseudomonas несут плазмиды, кодирующие ферменты, которые катализируют расщепление ароматических и галогенсодержащих огранических соединений. В большинстве случаев одна плазмида содержит гены ферментов одного специфичного катаболического пути. Объединяя плазмиды разных штаммов Pseudomonas в одном хозяине, можно создать организм, способный к деградации нескольких соединений. Кроме того, с помощью генетических манипуляций можно расширить спектр субстратов, разрушаемых с помощью определенного ферментативного пути. [c.302]

    Опять-таки имеется семейство ферментов, специфичных к цепям разной длины. Одним из продуктов [уравнение (9-2)] служит ацетил-СоА, который поступает в цикл трикарбоновых кислот и подвергается катаболическому распаду с образованием СО2. Вторым продуктом тиолитического распада является ацил-СоА-производное, которое на два атома углерода короче исходной молекулы. Оно снова вступает в цикл р-окисления, причем в результате каждого оборота цикла освобождается двухуглеродный фрагмент, уходящий в виде ацетил-СоА [уравнение (9-2)]. Процесс продолжается до полного расщепления жирнокислотной цепи. Если исходная жирная кислота содержала в не-разветвленной цепи четное число атомов углерода, то ацетил-СоА бу- [c.309]

    Окисление химически устойчивой двухуглеродной ацетильной группы представляет собой весьма трудную химическую задачу. Как мы уже знаем, разрыв связи С—С чаще всего происходит между атомами, занимающими а- и р-иоложения относительно карбонильной группы. Такое р-расщепление (гл. 7, разд. И) в случае ацетильной группы, естественно, невозможно. Единственный способ, который обычно реализуется,— это тиаминзависимое расщепление связи С—С по соседству с карбонильной группой (а-расщепление, гл. 8, разд. Г). Однако а-расщепление требует предварительного окисления (гидроксилирования) метильной группы ацетата. Хотя известно много примеров биологических реакций гидроксилирования (гл. 10, разд. Ж), эти реакции весьма редко используются в основных катаболических процессах  [c.317]

    Основные механизмы, регулирующие катаболические пути, — индукция синтеза ферментов и катаболитная репрессия. Катаболические пути, в которых функционируют конститутивные ферменты, регулируются большей частью посредством аллостерических воздействий на активность ферментов. Одна из задач катаболических путей — обеспечение клетки энергией. У большинства прокариот возможности генерации энергии намного превышают потребности в ней клетки. Количество АТФ, которое можно синтезировать с помощью имеющихся в клетках аэробных прокариот ферментов гликолитического и дыхательного путей, значительно больше количества АТФ, необходимого для процессов биосинтеза и поддержания жизнедеятельности. Поэтому клетки должны обладать способностью контролировать потребление энергодающих субстратов и, следовательно, выработку клеточной энергии. Основной принцип контроля прост АТФ синтезируется только тогда, когда он необходим. Иными словами, интенсивность энергетических процессов у прокариот регулируется внутриклеточным содержанием АТФ. [c.123]

    Как правило, в катаболических реакциях участвует НАО+, и поэтому не совсем обычно, когда в таких реакциях в качестве окислителя выступает ЫАОР+. Тем не менее у млекопитающих ферменты пентозо-фосфатного цикла специфичны к НАОР+. Существует предположение, что это связано с потребностью в МАОРН для процессов биосинтеза (гл. 11, разд. В). Тогда становится понятным функционирование пенто-зофосфатного пути в тканях с наиболее активным биосинтезом (печень, молочная железа). Возможно, что в этих тканях Сз-продукты цикла вовлекаются в процессы биосинтеза, как показано на рис. 9-8, Л. Далее читателю должно быть уже понятно, что любой продукт от С4 до С может быть выведен из цикла в любых желаемых количествах без каких-либо нарушений в работе этого цикла. Например, мы знаем, что образующийся на промежуточной стадии С4-продукт эритрозо-4-фосфат используется бактериями и растениями (но не животными) для синтеза ароматических аминокислот. Подобным же образом рибозо-5-фос-фат необходим для образования нуклеиновых кислот и некоторых аминокислот. [c.343]

    Упоминание о митохондриях обычно вызывает у биохимиков представление о цикле трикарбоновых кислот, -окислительном пути метаболизма жирных кислот и окислительном фосфорилировании. Помимо этих главных процессов в митохондриях протекает множество других химических превращений. Вероятно, наиболее существенное из ннх — это концентрирование ионов, таких, как ионы Са +. Митохондрии также контролируют приток и отток многих соединений, в том числе я АТР. Таким образом, они выполняют важные регуляторные функцна> как в катаболических процессах, так и в процессах биосинтеза. По мере своего роста и размножения митохондрии синтезируют часть своих белков, а ряд других белков получают из цитоплазмы. [c.393]

    Несмотря на большое число исследований, чисто химический аспект действия инсулина остается неясным — . Обычно считается, что гормон действует на плазматические мембраны всех тканей, вызывая заметные изменения проницаемости, что поиводит к возрастанию поглощения глюкозы, различных ионов и других веществ. Такого рода изменения проницаемости могут обусловить сильное влияние инсулина на важнейшие процессы биосинтеза имеет место, в частности, повышение синтеза гликогена, липидов и белков. В то же время процессы катаболизма подавляются и активность катаболических ферментов, например глюкозо-6-фосфатазы, снижается. Ключом к пониманию действия инсулина может явиться выяснение вопроса о природе его вторичного посредника , аналогичного по своему действию сАМР. Высказывались предположения, что вторичным посредником для инсулина является сАМР, однако более вероятно, что эту роль выполняет какой-то ион, возможно К+ . [c.505]

    Одним из уникальных свойств живых организмов является удивительная их способность к сохранению сбалансированности катаболических (биодегра-дативных) и анаболических (биосинтетических) процессов. При этом в клетках одновременно совершаются процессы синтеза, распада и взаимопревращения сотен и тысяч разнообразных веществ, которые в свою очередь регулируются множеством механизмов, обеспечивающих постоянство внутренней среды организма. Некоторые из этих регуляторных механизмов, среди которых важная роль принадлежит механизмам регуляции синтеза и каталитической активности ферментов, будут рассмотрены далее.[c.152]

    Скорость реакции (как и активность ферментов) в чисто биодеградативных (катаболических) процессах регулируется промежуточными продуктами, являющимися индикаторами энергетического состояния клетюг (пуриновые нуклеотвды, пирофосфат, неорганический фосфат и др.). [c.155]

    Второй путь превращения арахидоновой кислоты—липоксигеназ-ный путь (рис. 8.4) — отличается тем, что дает начало синтезу еще одного класса биологически активных веществ—лейкотриенов. Характерная особенность структуры лейкотриенов заключается в том, что она не содержит циклической структуры, хотя лейкотриены, как и простаноиды, построены из 20 углеродных атомов. В структуре лейкотриенов содержатся четыре двойные связи, некоторые из них образуют пептидолипвдные комплексы с глутатионом или с его составными частями (лейкотриен D может далее превращаться в лейкотриен Е, теряя остаток глицина). Основные биологические эффекты лейкотриенов связаны с воспалительными процессами, аллергическими и иммунными реакциями, анафилаксией и деятельностью гладких мышц. В частности, лейкотриены способствуют сокращению гладкой мускулатуры дыхательных путей, пищеварительного тракта, регулируют тонус сосудов (оказывают сосудосуживающее действие) и стимулируют сокращение коронарных артерий. Катаболические пути лейкотриенов окончательно не установлены. [c.286]

    Оба модифицированных гена участвуют в процессе деградации всех субстратов данного метаболического пути. Поэтому стратегия, использованная для повышения эффективности расщепления 4-этилбензоата, применима и в случае других соединений мутация, приводящая к гиперпродукции Ху18-белка, может усиливать активацию Р -промотора и повышать скорость разрушения субстрата кроме того, можно избирательно модифицировать Р -промотор, чтобы он стал более сильным, сохранив способность взаимодействовать с Ху18-белком. Таким образом, проведенная работа показывает, что вполне реально усовершенствование того или иного катаболического [c.283]

    Процесс, обеспечивающий синтез Сб-углеводов из неуглеводных предшественников, например аминокислот, глицерина, молочной кислоты, получил название глюконеогенеза. Таким путем, сочетающим использование имеющегося в клетке катаболического аппарата и специальных реакций, служащих только для биосинтетических целей, решается прокариотами проблема биосинтеза необходимых моносахаров. [c.87]

    Ферредоксины играют центральную роль в метаболизме клостридиев, сопрягая катаболические процессы с биосинтетическими реакциями (рис. 59). Объясняется это тем, что у клостридиев (как и других облигатных [c.235]

    Восстановление фумарата до сукцината может быть использо-вагно для анаболических целей (необходимость сукцината для син-те за тетрапирролов) или же в катаболических процессах. В по-с леднем случае все компоненты реакции могут быть растворимы- ми, и тогда процесс служит только для акцептирования электронов (рис. 91, А), или же находиться в связанном с мембраной состоянии (рис. 91, Б—Г). По имеющимся данным, это не всегда приводит к синтезу АТФ. Образование протонного градиента на мембране при переносе электронов на фумарат зависит от состава и расположения электронных переносчиков.[c.352]

    В ряде предыдущих разделов продемонстрирована способность многих типов природных изохинолиновых оснований подвергаться катаболическим процессам. Реакции окисления, расшепления и реииклизапии, следуя друг [c.510]

    Таким образом, сперматозоиды обладают весьма выраженными катаболическими процессами. Эти клетки богаты субстратом и митохондриями и обладают весьма интенсивным дыханием. С другой стороны, по мнению Ж. Браше (1957), обмен белков и нуклеиновых кислот в этих клетках чрезвычайно незначителен, а может быть, не происходит вообще. [c.256]


Процессы катаболизма у кардиохирургических больных | Ломиворотов

1. Gore D. C., O’Brien R., Reines H. D. Derangements in peripheral glucose and oxygen utilization induced by catabolic hormones. Crit. Care Med. 1993; 21: 1712—1716.

2. Moore F. D. The Metabolic care of the surgical patient. Philadelphia: W. B. Saunders; 1959.

3. Lund P., Williamson D. Inter-tissue nitrogen fluxes. Br. Med. Bul. 1985; 41 (3): 251—256.

4. Виру А. А. Изменения белкового обмена в процессах адаптации. Физиологические проблемы адаптации. В кн.: Тез. докл. 4 Всесоюз. симпоз. по физиологическим проблемам адаптации. Тарту; 1984. 13—18.

5. Меерсон Ф. З. Адаптация, стресс и профилактика. М.: Медицина; 1981.

6. McKnight C. K., Elliott M. J., Pearson D. T. The effects of four different crystalloid bypass pump-priming fluids upon the metabolic response to cardiac operations. J. Thorac. Cardiovasc. Surg. 1985; 90: 97—111.

7. Johnson D. J., Brooks D. C., Pressler V. M. Hypothermic anesthesia attenuates postoperative proteolysis. Ann. Surg. 1986; 204: 419—429.

8. Gibbs J., Cull W., Henderson W. et al. Preoperative serum albumin level as a predictor of operative mortality and morbidity: Results from the national VA surgical risk study. Arch. Surg. 1999; 134 (1): 36—42.

9. Bessey P. Q., Watterd J. M., Aoki T. T., Wilmore D. W. Combined hormonal infusion stimulates the metabolic response to injury. Ann. Surg. 1984; 200: 264—280.

10. Gelfand R. A., Matthews D. E., Bier D. M., Sherwin K. S. Role of counterregulatory hormones in the catabolic response to stress. J. Clin. Invest. 1984; 74: 2238—2248.

11. Fryburg D. A., Gelfand R. A., Barrett E. J. Growth hormone acutely stimulates muscle protein synthesis in normal humans. Am. J. Physiol. Endocrinol. Metab. 1991; 260: 499—504.

12. Kimball S. R., Vary T. C., Jefferson L. S. Regulation of protein synthesis by insulin. Ann. Rev. Physiol. 1994; 56: 321—348.

13. Jakob S. M., Ensinger H., Takala J. Metabolic changes after cardiac surgery. Curr. Opin Clin. Nutr. Metab. Care 2001; 4 (2): 149—155.

Метаболизм | справочник Пестициды.ru

Cхема метаболических процессов


Cхема метаболических процессов


Процессы метаболизма


Метаболизм включает две группы жизненно важных процессов – катаболизм (энергетический обмен) и анаболизм (биосинтез, или пластический обмен). [3]


  • Катаболизм – это совокупность процессов расщепления питательных веществ, которые происходят в основном за счет реакций окисления. В результате выделяется энергия. Основными формами катаболизма у микроорганизмов являются брожение и дыхание. При брожении происходит неполный распад сложных органических веществ с выделением небольшого количества энергии и накоплении богатых энергией конечных продуктов. При дыхании (аэробном) обычно осуществляется полное окисление соединений с выходом большого количества энергии.[3]

  • Анаболизм объединяет процессы синтеза молекул из более простых веществ, которые присутствуют в окружающей среде. Реакции анаболизма связаны с потреблением свободной энергии, которая вырабатывается в процессах дыхания, брожения. Для протекания пластического обмена необходимо поступление в организм питательных веществ, на основе которых при участии выделенной в ходе катаболизма энергии обновляются структурные компоненты клеток, происходит рост и развитие. [3]


Катаболизм и анаболизм протекают параллельно, многие их реакции и промежуточные продукты являются общими. Тем не менее, на протяжении разных периодов существования интенсивность пластического и энергетического обмена неодинакова. Так, у насекомых в период размножения, линьки, во время ранних фаз развития (яйцо, личинка) синтетические процессы преобладают над процессами распада. В тоже время, определенные дегенеративные изменения в организме (старение, заболевания) способны приводить к преобладанию интенсивности катаболизма над анаболизмом, что порой угрожает гибелью живому объекту.[3](фото)

Превращение сульфооксида в сульфон


Превращение сульфооксида в сульфон



Использовано изображение:[2]

Метаболизм пестицидов


Метаболизм пестицидов – превращения пестицидов под влиянием продуктов жизнедеятельности различных живых организмов – бактерий, грибов, высших растений и животных. [4]


В результате биотрансформации токсичных веществ в большинстве случаев образуются менее токсичные продукты (метаболиты), более растворимые и легко выводимые из организма. В некоторых случаях токсичность метаболитов оказывается выше, чем попавших в организм веществ. Обмен промышленных ядов возможен за счет реакций окисления, восстановления, гидролитического расщепления, метилирования, ацилирования и др.[1]


В метаболизме пестицидов большое значение имеют реакции окисления атома серы в молекулах некоторых веществ, что характерно, например, для инсектицидов из группы производных карбаминовой и фосфорной кислот. Окисление серы у этих соединений происходит независимо от структуры остальной части молекулы, при этом вначале образуется соответствующий сульфооксид, а затем сульфон: (фото) Продукты окисления не отличаются по токсичности от исходного вещества, но они значительно более стойки к гидролизу.

Окисление тионофосфатов


Окисление тионофосфатов



А — тионофосфат, В – фосфат, 1 и 2- свободные радикалы,  3 — кислотный остаток


Использовано изображение:[2]


Реакции метаболизма, происходящие в растениях, обусловливают длительное инсектицидное действие для ряда эфиров фосфорных кислот с тиоэфирным радикалом. Окисление тионофосфатов в различных организмах рассматривается как активирующая ступень в процессах метаболизма этих веществ.[2](фото)


Токсичность продукта реакции для млекопитающих и насекомых увеличивается в десятки и сотни раз по сравнению с исходным веществом. Однако эти токсичные метаболиты легко гидролизуются и поэтому сохраняются в биологических средах непродолжительное время.[2]

Близкие статьи

Ссылки:


Все статьи о токсикологии в разделе: Основы токсикологии

 

Статья составлена с использованием следующих материалов:

Литературные источники:

1.


Голдовская Л.Ф. Химия окружающей среды. М.: Мир; БИНОМ. Лаборатория знаний, 2007. – 295 с

2.

Груздев Г.С. Химическая защита растений. Под редакцией Г.С. Груздева — 3-е изд., перераб. и доп. — М.: Агропромиздат, 1987. — 415 с.: ил.

3.


Липунов И.Н. , Первова И.Г. Основы микробиологии и биотехнологии: курс лекций. – Екатеринбург: Урал. гос. лесотехн. Университет, 2008. – 231 с

4.

Мельников Н.Н., Новожилов К.В., Белан С.Р., Пылова Т.Н. Справочник по пестицидам — М.: Химия, 1985. — 352 с.

Свернуть
Список всех источников

как проходит процесс в организме

Поделиться:

Практически каждый атлет знает, что расти все время невозможно. Каждый борется с этим по-своему. Именно из-за невозможности постоянного роста и появились в свое время хардгейнеры. Видели вы бодибилдеров, которые питаются по расписанию и постоянно глотают анаболические стероиды? Зачем все это нужно? Ответ заключается в одном слове – катаболизм.

Суть

Катаболизм – это прямая составляющая метаболических процессов в организме. Что она из себя представляет? Все очень просто – это оптимизация ресурсов. Наш организм работает, как маятник, постоянно создавая новые клетки, и разрушая старые. Фактически за 5 лет вы полностью обновляетесь, являясь другим человеком. Но и это еще не все.

В биохимическом понимании катаболизм – это распад сложных веществ на более простые или же окисление различных молекул. Процесс протекает с высвобождением энергии:

  • тепла;
  • молекул АТФ – основного источника энергии любой биохимической реакции.

Катаболизм и анаболизм находятся в постоянном равновесии, и напрямую зависят от следующих факторов:

  • Гормонов, так как указанные вещества – главные регуляторы катаболизма и анаболизма.
  • Необходимости в изменении баланса.
  • Питания.
  • Скорости метаболизма.
  • Количества сна.
  • Других факторов.

Рассмотрим на простом примере процессы оптимизации ресурсов организма. Изначально, в течение дня, организм стремиться к расщеплению энергии и синтезу новых клеток.

В ночное время, происходит перезагрузка, и он начинает убивать ненужные клетки, расщепляя их, и подготавливаясь к обновлению.

В случае возникновения стрессовых нагрузок, катаболические процессы значительно ускоряются. Однако, в этом случае, ускорение катаболизма происходит в качестве подготовки к мощному анаболическому скачку. Умертвляются и разрушаются все клетки, которые неспособны выдерживать новые уровни нагрузок, заменяясь более мощными и сильными.

Нагрузки – являются именно тем фактором, который влияет на сдвиг баланса между анаболическими и катаболическими процессами.

Когда нагрузки в организме проходят (например, человек перестает заниматься спортом), то умный организм оптимизирует ресурсы для того, чтобы в случае голодовки или другого мощного стресса мог выжить. И все мы наблюдаем разрушение мышц. Особенно это хорошо заметно, если следить за атлетами после окончания их карьеры. Обычно они теряет до 40% от наработанной мышечной массы.

Важно понимать, что физические нагрузки – не единственный фактор, который изменяет баланс между катаболизмом и анаболизмом. Любое изменение в режиме дня или питании может сдвинуть ползунок в ту или иную сторону.



Химический запуск катаболизма

Большинство спортсменов в поисках быстрого решения прибегают к препаратам, запускающим сугубо жировой катаболизм. Что это, понять будет проще, если представить себе программу, которую можно загрузить в человеческое тело, задав параметры – брать энергию только из жировых клеток, весь поступающий белок отправлять на постройку мышц, а лишние углеводы ни в коем случае не откладывать про запас, а выводить из организма естественным путем. Такое вполне возможно при приеме гормональных препаратов либо с использованием специальных растительных компонентов. Для многих людей такое «вмешательство в систему» пройдет безболезненно. Полностью остановив катаболизм белков, спортсмен быстро распрощается с жировыми отложениями. А некоторые могут навредить сердечно-сосудистой системе, нарушить обмен веществ, развить аллергию, стать бесплодным и т.п. В любом случае сначала нужно сделать общий анализ крови, и только выяснив свою предрасположенность к болезням, потреблять химические препараты.

Этапы

Так как катаболизм – это циклическая процедура, то она имеет активные и пассивные фазы, совмещенные с анаболизмом. Рассмотрим подробнее этапы катаболизма:

  1. Этап первый – стресс.
  2. Этап второй – разрушение.
  3. Этап третий – супервосстановление.
  4. Этап третий альтернативный – оптимизация.
  5. Этап четвертый – баланс.

С первого этапа начинается активное потребление организмом резервных ресурсов. Стрессом считается практически вся деятельность человека, выходящая за его привычный режим дня. Так, катаболизм мышц может провоцировать:

  • Изменение режима дня, уменьшение сна.
  • Необычная нагрузка на мышцы.
  • Изменение плана питания.
  • Увеличение потребления адреналиновых стимуляторов.

В процессе получения стресса, организм начинает разрушать резервные ресурсы (начиная от гликогеновых запасов, которые тоже хранятся в мышечной ткани, и заканчивая самими мышцами). Если у организма остаются резервные источники энергии или произведена своевременная подпитка, то начинается процесс супер восстановления.

Интересный факт: замечали ли вы, что при умственной нагрузке, организм активно требует сладкого. Или то, что девушки заедают все свои проблемы и горести тортиками и сладким чаем. Так вот – это является следствием не только наличия стимуляторов «гормона удовольствия», но и естественной потребностью организма для восстановления сил и подготовки организма к возможным стрессам.

Если в организме нет резервных средств для восстановления, то начинается этап оптимизации. В этот момент синтез АТФ и гликогена прекращается, а сам организм уменьшает потребление энергии, за счет разрушения энергопотребителей.

Самыми главными энергопотребителями являются мышцы и мозг.

Вывод: голодание провоцирует не только падение мышечной массы, но и разрушение мозга. Поэтому люди, которые постоянно испытывают дефицит калорий, становятся фактически тупее своих сытых собратьев.

После окончания оптимизации (супервосстановления), организм приводит анаболические и катаболические процессы в баланс. Обычно этот этап занимает до 48 часов, пока организм стабилизируется.

Примечание: по этой же причине, люди не принимающие анаболические стероиды должны делать перерыв между тренировками не менее 48 часов.

В процессы катаболизма входят:

  • окисление тканей;
  • изменение баланса АТФ;
  • прекращение синтеза АТФ;
  • расщепление аминокислот на энергию.
  • изменение липидного баланса;
  • изменение размера гликогенового депо.

Это далеко не все, что происходит во время катаболизма.

В целом, в биохимии этапы общего пути катаболизма проходят следующим образом:

  1. Расщепление в желудочно-кишечном тракте – цепь реакций, в результате которых сложные молекулы превращаются в более простые метаболиты. Так получаются глюкоза, жирные кислоты, аминокислоты.
  2. Специфические катаболические пути – расщепление простых метаболитов до пировиноградной кислоты или ацетил-КоА.
  3. Окислительное декарбоксилирование пирувата, цитратный цикл, дыхательная цепь – финальный этап катаболизма, в результате которых из пищевых компонентов образуются конечные продукты (источник – Учебник “Биологическая химия”, Северин).

Биохимические процессы довольно сложны, и в каждом случае катаболизм проходит индивидуально.

Потеря мышечной массы: от чего зависит скорость катаболизма

Атлету следует знать, что на скорость катаболизма влияют следующие биологические факторы.

  • Сон. Вопреки общепринятому мнению, ночью наш организм вовсе не отдыхает, а занимается перераспределением веществ и заменой изношенных мышечных волокон. Из-за хронического недосыпания, наше тело не успевает должным образом восстанавливаться и вынуждено наспех «латать прорехи» за счет самих же мышц.
  • Стрессы также усиливают скорость катаболизма. Речь в данном случае идет не только о психоэмоциональном состоянии, но также и о физических нагрузках. Занимаясь на пределе своих возможностей, мы увеличивает выработку защитных гормонов, включая мешающего приросту мышечной массы кортизола. При возникновении угрозы здоровью это вещество мгновенно включается в работу, начиная черпать ресурсы, необходимые для стимуляции жизненно важных органов и систем, из мышечной ткани.
  • От рациона питания напрямую зависит скорость метаболических процессов. Уменьшить потерю массы во время тренировок можно только за счет увеличения калорийности пищи. Без необходимого запаса полезных веществ тело начнет сжигать мышцы, тем самым способствуя их ускоренному катаболизму.

Как замедлить?

Рассматривая специфические и общие пути катаболизма, можно сделать вывод о том, что остановить катаболизм невозможно. В то же время, можно поискать пути его замедления.

Скорость катаболизма напрямую связана со скоростью обмена веществ. Несмотря на тот факт, что люди думают, что медленный обмен веществ приводит к набору веса и приводит к катаболизму – это не совсем верно. Поэтому, если ваша цель замедлить катаболизм, есть 3 основных пути:

  1. Увеличить время анаболических процессов.
  2. Уменьшить стресс для организма.
  3. Замедлить обмен веществ.

Для увеличения анаболических процессов, нужно постоянно подпитывать организм энергией и строителями.

Именно поэтому опытные бодибилдеры питаются по 5-8 раз в день, строго в определенное время.

Для увеличения времени анаболических процессов нужно есть трудноперевариваемую пищу (сложные углеводы, обильно снабженные клетчаткой), и употреблять не менее 2-х грамм белка на килограмм чистой массы.

Уменьшение стрессовых ситуаций для организма достичь проще. Не двигайтесь, спите и ощущайте радостные эмоции. Этому может помочь выходной/отпуск/перерыв между тренировками. 8 часовой сон, и плитка черного горького шоколада.

Замедление обмена веществ достичь предельно просто – нужно просто создать ситуацию, при которой обменные процессы предельно замедлятся. Хороший способ – много спать. Плохой способ – перестать есть.

Правильное питание

Катаболизм мышц при похудении неизбежен, что бы ни говорили спортсмены и тренеры. Но его можно свести к минимуму, поставляя в организм необходимое количество белков, углеводов и жиров. Полностью урезать жиры и углеводы из рациона нельзя, и диеты, где такое рекламируется, нужно обходить стороной. Организм человека способен добыть из мышц необходимое ему количество энергии, а при малейшей возможности, сэкономив энергию, сделает себе такой запас жира, который достать будет очень сложно.

Расчет питания прост. В среднем, потребность организма в калориях составляет 33 ккал на один килограмм веса. Потребность в белке и углеводах – 3 и 4 грамма на 1 кг массы человека, соответственно. Остальное жиры. В одном грамме белка и углеводов – 4 ккал, а в грамме жира – 9 ккал. То есть для спортсмена весом 80 кг нужно потреблять 2640 ккал. После математических расчетов, чтобы не запустить мышечный катаболизм, нужно 240 гр. белков, 320 гр. углеводов и 44 грамма жиров. Урезать нужно жиры и углеводы по 3-5% в день, при ухудшении самочувствия остановиться.

Продукты для замедления катаболизма

Как мы раньше уже упоминали, в спортивных дисциплинах важно соблюдать правильный баланс между анаболизмом и катаболизмом.

Однако для этого не обязательно принимать анаболики. Достаточно использовать продукты, которые снижают скорость катаболизма, тем самым провоцируя положительный баланс анаболических процессов по отношению к катаболизму.

Продукт Принцип воздействия
Корень имбиря Является прямым стимуляторов выработки андрогенного гормона
Кофеин Является мощным адреналиновым стимулятором
Лимон Витамин С – замедляет процессы окисления и распада мышц
Мясо Белковая структура, которая позволяет сместить баланс анаболизма по отношению к катаболизму
Яйца Белковая структура, которая позволяет сместить баланс анаболизма по отношению к катаболизму
Молоко Белковая структура, которая позволяет сместить баланс анаболизма по отношению к катаболизму
Трибулус Является прямым стимуляторов выработки андрогенного гормона
Сложные углеводы Прекращает распад мышечных структур для получения энергии
Полинасыщенные омега 9 кислоты Являются предвестниками холестерина
Продукты содержащие полезный холестерин Холестерин – позволяет значительно увеличить выработку анаболических гормонов, снизив уровень катаболизма практически до нуля

Что такое катаболизм или как защитить мышцы от разрушения

Большинству продвинутых бодибилдеров известно такое понятие как катаболизм. Катаболизм в химии – это процесс распада веществ. В бодибилдинге, этот термин конкретизируется к разрушению белков. Катаболизма нужно максимально избегать. Следствиями катаболизма является слабость и склонность к травмам. Ваши метаболические процессы замедляются, уменьшается объем калорий, которое Вы сжигаете в спокойном состоянии. Не стоит забывать, что для поддержания мышц в форме требуются усиленные тренировки, здоровое и главное сбалансированное питание, а также отсутствие стресса.

Диагностические критерии рабдомиолиза

Заподозрить заболевание можно по следующим критериям: перенесенная травма мышечной ткани, болезненность и отёк мускулатуры, потемнение мочи. Эти симптомы позволяют поставить предварительный диагноз «рабдомиолиз». Болезнь всегда сопровождается изменениями со стороны крови и мочи. Диагноз подтверждается, если при лабораторных исследованиях выявлены следующие нарушения:

  1. Повышенный уровень креатинфосфокиназы.
  2. Появление в крови миоглобина.
  3. Повышение уровней фосфора и калия, снижение ионов кальция.
  4. При развитии почечной недостаточности – большое количество креатинина и мочевины.
  5. Миоглобинурия (появление белка в моче).

Помимо этого, изменения наблюдаются на ЭКГ (расширение желудочковых комплексов, появление Т-волн). При выраженном синдроме сдавления могут иметься повреждения внутренних органов, костей. Поэтому для диагностики нарушений необходимо провести рентгенографию.

Отрывок, характеризующий Катаболизм

– Душа, душа болит, – разгадала и сказала княжна Марья. Он утвердительно замычал, взял ее руку и стал прижимать ее к различным местам своей груди, как будто отыскивая настоящее для нее место. – Все мысли! об тебе… мысли, – потом выговорил он гораздо лучше и понятнее, чем прежде, теперь, когда он был уверен, что его понимают. Княжна Марья прижалась головой к его руке, стараясь скрыть свои рыдания и слезы. Он рукой двигал по ее волосам. – Я тебя звал всю ночь… – выговорил он. – Ежели бы я знала… – сквозь слезы сказала она. – Я боялась войти. Он пожал ее руку. – Не спала ты? – Нет, я не спала, – сказала княжна Марья, отрицательно покачав головой. Невольно подчиняясь отцу, она теперь так же, как он говорил, старалась говорить больше знаками и как будто тоже с трудом ворочая язык. – Душенька… – или – дружок… – Княжна Марья не могла разобрать; но, наверное, по выражению его взгляда, сказано было нежное, ласкающее слово, которого он никогда не говорил. – Зачем не пришла? «А я желала, желала его смерти! – думала княжна Марья. Он помолчал. – Спасибо тебе… дочь, дружок… за все, за все… прости… спасибо… прости… спасибо!.. – И слезы текли из его глаз. – Позовите Андрюшу, – вдруг сказал он, и что то детски робкое и недоверчивое выразилось в его лице при этом спросе. Он как будто сам знал, что спрос его не имеет смысла. Так, по крайней мере, показалось княжне Марье. – Я от него получила письмо, – отвечала княжна Марья. Он с удивлением и робостью смотрел на нее. – Где же он? – Он в армии, mon pere, в Смоленске. Он долго молчал, закрыв глаза; потом утвердительно, как бы в ответ на свои сомнения и в подтверждение того, что он теперь все понял и вспомнил, кивнул головой и открыл глаза. – Да, – сказал он явственно и тихо. – Погибла Россия! Погубили! – И он опять зарыдал, и слезы потекли у него из глаз. Княжна Марья не могла более удерживаться и плакала тоже, глядя на его лицо. Он опять закрыл глаза. Рыдания его прекратились. Он сделал знак рукой к глазам; и Тихон, поняв его, отер ему слезы. Потом он открыл глаза и сказал что то, чего долго никто не мог понять и, наконец, понял и передал один Тихон. Княжна Марья отыскивала смысл его слов в том настроении, в котором он говорил за минуту перед этим. То она думала, что он говорит о России, то о князе Андрее, то о ней, о внуке, то о своей смерти. И от этого она не могла угадать его слов. – Надень твое белое платье, я люблю его, – говорил он. Поняв эти слова, княжна Марья зарыдала еще громче, и доктор, взяв ее под руку, вывел ее из комнаты на террасу, уговаривая ее успокоиться и заняться приготовлениями к отъезду. После того как княжна Марья вышла от князя, он опять заговорил о сыне, о войне, о государе, задергал сердито бровями, стал возвышать хриплый голос, и с ним сделался второй и последний удар. Княжна Марья остановилась на террасе. День разгулялся, было солнечно и жарко. Она не могла ничего понимать, ни о чем думать и ничего чувствовать, кроме своей страстной любви к отцу, любви, которой, ей казалось, она не знала до этой минуты. Она выбежала в сад и, рыдая, побежала вниз к пруду по молодым, засаженным князем Андреем, липовым дорожкам. – Да… я… я… я. Я желала его смерти. Да, я желала, чтобы скорее кончилось… Я хотела успокоиться… А что ж будет со мной? На что мне спокойствие, когда его не будет, – бормотала вслух княжна Марья, быстрыми шагами ходя по саду и руками давя грудь, из которой судорожно вырывались рыдания. Обойдя по саду круг, который привел ее опять к дому, она увидала идущих к ней навстречу m lle Bourienne (которая оставалась в Богучарове и не хотела оттуда уехать) и незнакомого мужчину. Это был предводитель уезда, сам приехавший к княжне с тем, чтобы представить ей всю необходимость скорого отъезда. Княжна Марья слушала и не понимала его; она ввела его в дом, предложила ему завтракать и села с ним. Потом, извинившись перед предводителем, она подошла к двери старого князя. Доктор с встревоженным лицом вышел к ней и сказал, что нельзя. – Идите, княжна, идите, идите! Княжна Марья пошла опять в сад и под горой у пруда, в том месте, где никто не мог видеть, села на траву. Она не знала, как долго она пробыла там. Чьи то бегущие женские шаги по дорожке заставили ее очнуться. Она поднялась и увидала, что Дуняша, ее горничная, очевидно, бежавшая за нею, вдруг, как бы испугавшись вида своей барышни, остановилась. – Пожалуйте, княжна… князь… – сказала Дуняша сорвавшимся голосом. – Сейчас, иду, иду, – поспешно заговорила княжна, не давая времени Дуняше договорить ей то, что она имела сказать, и, стараясь не видеть Дуняши, побежала к дому. – Княжна, воля божья совершается, вы должны быть на все готовы, – сказал предводитель, встречая ее у входной двери. – Оставьте меня. Это неправда! – злобно крикнула она на него. Доктор хотел остановить ее. Она оттолкнула его и подбежала к двери. «И к чему эти люди с испуганными лицами останавливают меня? Мне никого не нужно! И что они тут делают? – Она отворила дверь, и яркий дневной свет в этой прежде полутемной комнате ужаснул ее. В комнате были женщины и няня. Они все отстранились от кровати, давая ей дорогу. Он лежал все так же на кровати; но строгий вид его спокойного лица остановил княжну Марью на пороге комнаты. «Нет, он не умер, это не может быть! – сказала себе княжна Марья, подошла к нему и, преодолевая ужас, охвативший ее, прижала к щеке его свои губы. Но она тотчас же отстранилась от него. Мгновенно вся сила нежности к нему, которую она чувствовала в себе, исчезла и заменилась чувством ужаса к тому, что было перед нею. «Нет, нет его больше! Его нет, а есть тут же, на том же месте, где был он, что то чуждое и враждебное, какая то страшная, ужасающая и отталкивающая тайна… – И, закрыв лицо руками, княжна Марья упала на руки доктора, поддержавшего ее.

Метаболический баланс

Комплексный анализ, направленный на оценку основных показателей обмена веществ организма человека.

Синонимы русские

Метаболизм; обмен веществ.

Синонимы английские

Metabolism; metabolic balance.

Какой биоматериал можно использовать для исследования?

Венозную кровь.

Как правильно подготовиться к исследованию?

  • Исключить из рациона алкоголь в течение 24 часов до исследования.
  • Не принимать пищу в течение 12 часов до исследования, можно пить чистую негазированную воду.
  • Исключить (по согласованию с врачом) прием стероидных и тиреоидных гормонов в течение 48 часов до исследования.
  • Полностью исключить (по согласованию с врачом) прием лекарственных препаратов в течение 24 часов перед исследованием.
  • Исключить физическое и эмоциональное перенапряжение в течение 24 часов до исследования.
  • Не курить в течение 3 часов до исследования.

Общая информация об исследовании

Процесс обмена веществ, или метаболизма, представляет собой ряд биохимических и молекулярных реакций и взаимодействий, необходимых для нормального функционирования организма. Различают углеводный, белковый, жировой (липидный) обмены веществ, обмен гормонов и биологически активных веществ, а также обмен микроэлементов. В норме обмен веществ в организме человека сбалансирован и обеспечивает стабильное функционирование систем и органов. Метаболизм включает как процессы распада веществ (катаболизм), так и процессы синтеза (анаболизм). При патологическом изменении процессов метаболизма отмечаются нарушения на молекулярном, клеточном, тканевом уровнях с дальнейшей дисфункцией органов и организма в целом. Для оценки показателей обмена веществ, функционирования систем и органов используется определение спектра лабораторных диагностических параметров.

Печень является одним из жизненно важных органов организма человека и играет большую роль в поддержании различных видов обмена веществ. Это центральный орган, где проходят процессы синтеза, распада и превращения углеводов, жиров, аминокислот, расщепление потенциально токсичных соединений, образующихся в ходе обмена веществ. Аланинаминотрансфераза (АЛТ) и аспартатаминотрансфераза (АСТ) – это ферменты, относящиеся к группе аминотрансфераз. Фермент АЛТ обнаруживается в цитоплазме гепатоцитов, почках, в незначительном количестве в клетках сердца, скелетных мышцах и эритроцитах. Фермент АСТ главным образом содержится в кардиомиоцитах, в меньшем количестве – в печени (в цитоплазме и митохондриях гепатоцитов), скелетных мышцах, головном мозге и почках. У здоровых пациентов уровни АЛТ и АСТ в крови сравнительно низки. При поражении печени, мышц и других тканей может отмечаться нарастание уровня данных показателей. Выявление уровня данных ферментов в сыворотке крови позволяет оценить выраженность цитолитического синдрома при диагностике и мониторинге заболеваний печени. Гамма-глютамилтранспептидаза (ГГТП) – это фермент, который обнаруживают в желчных канальцах и эпителиальных клетках, выстилающих желчный проток. Он является катализатором переноса аминокислот из плазмы крови в клетки, а также их реабсорбции из желчи в кровь. В кровеносном русле она не содержится, только в клетках, при разрушении которых их содержимое попадает в кровь. Щелочная фосфатаза – это фермент, который находится в эпителиоцитах желчных протоков, в гепатоцитах, остеобластах, слизистой оболочке кишечника, в легких и почках. Повышение уровней представленных ферментов может свидетельствовать о патологических процессах печени и желчевыводящих путей. Их определение важно при холестазе, циррозе и онкологических процессах печени, при токсическом воздействии на печень.

Билирубин является продуктом распада гемоглобина и других гемсодержащих белков в печени, селезенке и клетках ретикулоэндотелиальной системы. В сыворотке крови он представлен в виде двух фракций: прямого и непрямого, составляющих общий билирубин. Выявление билирубина используется для диагностики и мониторинга желтух различной этиологии, для выявления заболеваний печени, обтурации внутри- и внепеченочных протоков, холестаза.

Лактатдегидрогеназа (ЛДГ) – это внутриклеточный фермент, который катализирует окисление молочной кислоты в пируват и содержится практически во всех клетках организма. Он наиболее активен в скелетной мускулатуре, сердечной мышце, почках, печени и эритроцитах. Является маркером повреждения тканей и разрушения клеток и используется в диагностике большого количества заболеваний. Креатинкиназа – фермент, который катализирует фосфорилирование креатина и его дефосфорилирование с образованием молекулы АТФ. Его наибольшая активность отмечается в скелетных мышцах и миокарде, меньшая – в клетках головного мозга, гладких мышцах, плаценте и других. Определение фермента является важным при цитолитических процессах при заболеваниях миокарда, скелетных мышц, при инсульте и др.

Фермент амилаза в основном секретируется клетками слюнных желез и поджелудочной железы. Он участвует в гидролитическом расщеплении полисахаридов. Липаза – это фермент, участвующий в гидролизе триглицеридов и входящий в состав секрета поджелудочной железы. Выявление данных показателей используется для диагностики патологических процессов, затрагивающих поджелудочную железу, заболевания слюнных желез и протоков, а также другие компоненты пищеварительной системы.

Почки являются главными органами мочевыделительной системы и играют важную роль в поддержании постоянства метаболизма в организме человека. Для оценки функционального состояния почек, в частности оценки сохранности процессов клубочковой фильтрации, используется определение уровней мочевины и креатинина в сыворотке крови, а также оценка скорости клубочковой фильтрации. Креатинин – это продукт неферментативного распада креатина и креатина фосфата, образующийся в мышцах. Мочевина – один из основных продуктов белкового метаболизма, содержащий азот. В норме данные метаболиты выводятся из организма человека с мочой. При их повышенном содержании можно судить о наличии патологических процессов почек, нарушающих нормальное функционирование почечного фильтра, проявляющихся как увеличением их выведения, так и избыточным накоплением. Косвенным параметром, отображающим функционирование почек, является уровень мочевой кислоты в сыворотке крови. Избыточное её накопление может свидетельствовать о снижении функционирования почечного фильтра, а также увеличении клеточной гибели в организме.

Жировой обмен веществ базируется на выявлении определенных компонентов, их количестве и соотношении в норме и патологии. Холестерол (холестерин) – это многоатомный циклический спирт, жизненно важный компонент органов и тканей человеческого организма. Он участвует в образовании мембран клеток, является исходным субстратом для синтеза половых гормонов, глюкокортикоидных гормонов, которые участвуют в росте, развитии организма и реализации функции воспроизведения. Из него образуются желчные кислоты, которые входят в состав желчи, витамин D. Холестерол нерастворим в воде, поэтому транспортируется в крови в составе липопротеинов, представляющих собой комплекс холестерол + аполипопротеин). Триглицериды являются основным источником энергии для организма, нерастворимы в воде и переносятся в крови с белком в виде комплекса, который называется липопротеином. Известно несколько типов липопротеинов, различающихся пропорциями входящих в их состав компонентов: липопротеины очень низкой плотности (ЛПОНП), липопротеины низкой плотности (ЛПНП), липопротеины высокой плотности (ЛПВП). Выявление общего холестерола и фракций липопротеинов используется для оценки риска развития атеросклероза, сердечно-сосудистых заболеваний, диагностики нарушений липидного обмена, метаболического синдрома.

Глюкоза является моносахаридом, который является основным энергетическим субстратом большинства тканей организма человека. Определение концентрации глюкозы играет основную роль в оценке углеводного обмена. Уровень глюкозы важен при диагностике гипер- и гипогликемии, нарушении толерантности к глюкозе, диагностике и мониторинге течения сахарного диабета, в комплексной диагностике метаболического синдрома.

Общее содержание белка в сыворотке крови отражает состояние белкового обмена. Белки сыворотки крови имеют разные размеры, заряд молекулы и относятся к альбуминам или глобулинам. Отклонение уровня общего белка от нормы может быть вызвано рядом физиологических состояний (непатологического характера) или являться симптомом различных заболеваний.

С-реактивный белок – это гликопротеин, вырабатываемый печенью и относящийся к белкам острой фазы воспаления. Он участвует в активации каскада воспалительных реакций на поверхности эндотелия сосудов, связывании и модификации липидов низкой плотности (ЛПНП), то есть способствует развитию атеросклероза. Повышенный уровень С-реактивного белка позволяет прогнозировать риск возникновения сердечно-сосудистой патологии (гипертонической болезни, инфаркта миокарда, инсульта, внезапной сердечной смерти), сахарного диабета 2-го типа и облитерирующего атеросклероза периферических сосудов.

Оценить состояние водно-электролитного обмена позволяет определение концентрации основных электролитов. К ним относятся калий (K), натрий (Na), кальций (Сa), железо (Fe). Они участвуют в поддержании водно-солевого баланса и кислотно-щелочного равновесия, работе сердечно-сосудистой, мышечной, нервной систем. Калий является основным внутриклеточным катионом. Натрий в большей концентрации, около 96 %, содержится во внеклеточной жидкости и крови. Данные микроэлементы участвуют в поддержании заряда мембран клеток, механизмах возбуждения мышечных и нервных волокон. Кальций относится к числу важнейших минералов организма человека. Около 99  % ионизированного кальция сосредоточено в костях и лишь менее 1  % циркулирует в крови. Он необходим для нормального сокращения сердечной мышцы, поперечно-полосатых мышц, для передачи нервного импульса, является компонентом свертывающей системы крови, каркаса костной ткани и зубов. Железо является микроэлементом, входящим в состав гемоглобина, миоглобина, некоторых ферментов и других белков, которые участвуют в обеспечении тканей и органов кислородом.

Клинический анализ крови позволяет оценить качественный и количественный состав крови по основным показателям: содержание эритроцитов и их специфических показателей, лейкоцитов и их разновидностей в абсолютном и процентном соотношении (лейкоцитарная формула), тромбоцитов.

Тиреотропный гормон (ТТГ) вырабатывается гипофизом и регулирует выработку гормонов щитовидной железы (тироксина и трийодтиронина) по «системе обратной связи», которая позволяет поддерживать стабильную концентрацию этих гормонов в крови. Гормоны щитовидной железы являются основными регуляторами расхода энергии в организме, и поддержание их концентрации на необходимом уровне крайне важно для нормальной деятельности практически всех органов и систем.

Для чего используется исследование?

  • Для оценки основных показателей обмена веществ;
  • для оценки функционирования систем и органов организма человека;
  • для оценки диагностических показателей углеводного, белкового, жирового обменов, обмена гормонов и биологически активных веществ, а также обмена микроэлементов;
  • для определения баланса показателей обмена веществ (метаболизма) в норме и при подозрении на развитие того или иного заболевания.

Когда назначается исследование?

  • При диагностике нарушений основных видов обмена веществ;
  • при оценке функционального состояния печени, почек и органов мочевыделения, пищеварительной системы, сердечно-сосудистой системы, нервной системы, эндокринной системы;
  • при подозрении на наличие патологического процесса или заболевания, сопровождающегося нарушением обмена веществ;
  • при профилактических осмотрах.

Что означают результаты?

Референсные значения

Причины повышения и понижения индивидуальны для каждого исследуемого показателя в комплексе. Рекомендуется оценивать полученные результаты как изолированно, так и совместно по исследуемым системам, органам при подозрении на ту или иную патологию.

Что может влиять на результат?

  • Несоблюдение диеты: прием жирной пищи или голодание могут искажать значения определяемых параметров;
  • применение многих лекарственных препаратов, биологически активных добавок, алкоголя;
  • интенсивная физическая нагрузка;
  • беременность.


Скачать пример результата

Также рекомендуется

[40-135] Лабораторное обследование при метаболическом синдроме

[40-134] Развернутое лабораторное обследование почек

[40-483] Лабораторное обследование функции печени

Кто назначает исследование?

Терапевт, врач общей практики, кардиолог, эндокринолог, гастроэнтеролог, нефролог, уролог, педиатр, хирург, гематолог.

Литература

  1. Долгов В.В., Меньшиков В.В. Клиническая лабораторная диагностика: национальное руководство. – Т. I., Т.  II – М. : ГЭОТАР-Медиа, 2012.
  2. Камышников В.С. и др. Методы клинических лабораторных исследований / под ред. В.С. Камышникова.- 3-е изд., перераб. и доп. – М.: МЕДпресс-информ, 2009. – 752 с.: ил.
  3. Stephen R, Jolly SE, Nally JV Jr, Navaneethan SD Albuminuria: when urine predicts kidney and cardiovascular disease / Cleve Clin J Med. 2014 Jan;81(1):41-50. doi: 10.3949/ccjm.81a.13040. Review.
  4. Wilkins T, Tadkod A, Hepburn I, Schade RR Nonalcoholic fatty liver disease: diagnosis and management / Am Fam Physician. 2013 Jul 1;88(1):35-42.
  5. Fauci, Braunwald, Kasper, Hauser, Longo, Jameson, Loscalzo Harrison’s principles of internal medicine, 17th edition, 2009.

Пищеварение и обмен веществ | Tervisliku toitumise informatsioon

Съеденная пища должна перевариться, чтобы содержащиеся в ней питательные вещества всосались в кровь. Пищеварение осуществляет пищеварительная система человека, или пищеварительный аппарат. Пищеварительный аппарат состоит из ротовой полости, глотки, пищевода, желудка, тонкой кишки (в т.ч. двенадцатиперстной кишки, тощей кишки, подвздошной кишки) и толстой кишки. Также пищеварению способствуют поджелудочная железа (панкреас) и печень.

Желудочно-кишечный тракт, или пищеварительный канал,  – трубчатый. Для обеспечения достаточно быстрой скорости всасывания всасывающая поверхность имеет разветвленную структуру. Особенно разветвленной является тонкая кишка. Между разветвлениями имеются пищеварительные железы, которые направляют пищеварительные соки в желудочно-кишечный тракт. 

Внутренняя поверхность желудочно-кишечного тракта покрыта слизью, особенно много слизи в районе желудка и ниже.

Наличие слизи необходимо по трем причинам:
  • защищает от вредных факторов
  • способствует продвижению перевариваемой массы
  • в области кишечника в слизи содержится целый ряд исключительно необходимых пищеварительных ферментов и большая часть полезных микроорганизмов

Поскольку пищеварение и всасывание питательных веществ – это взаимосвязанные процессы, в клетках слизистой оболочки желудочно-кишечного тракта очень хорошее кровоснабжение. В желудочно-кишечном тракте перевариваемая масса движется дальше при помощи ритмичных сокращений слизистой оболочки желудка и кишечника, этот процесс и называется перистальтикой.

Обмен веществ, или метаболизм, – это совокупность всех (ферментных) реакций, которые происходят в клетке.

Обмен веществ является основой жизнедеятельности организма. Обмен веществ в организме человека – это крайне сложный процесс, в котором принимает участие около 30000 белков, 4000 из которых являются ферментами. Условно обмен веществ можно разделить на катаболизм и анаболизм (процессы расщепления и синтеза). 

Основные функции обмена веществ:
  • расщепление питательных веществ, их всасывание (переваривание) и использование,
  • посредством синтеза биомолекул тела, которые являются строительным материалом,
  • для производства энергии,
  • вывод из организма конечных продуктов обмена веществ, обезвреживание и вывод из организма чужеродных соединений.

Основные процессы обмена веществ одинаковы у всех людей! Поскольку скорость работы (активность) различных ферментов у разных людей не всегда абсолютно одинакова, скорость обмена веществ также может различаться.

Страницы о пищеварении и обмене веществ были подготовлены совместно с Михкелем Зильмером, профессором медицинской биохимии Тартуского университета.

Гормоны, масса тела и упражнения

Обзор

Ваш метаболизм включает в себя набор процессов, которые все живые существа используют для поддержания своего тела. Эти процессы включают как анаболизм, так и катаболизм. Оба помогают организовать молекулы, высвобождая и улавливая энергию, чтобы тело работало сильнее. Эти фазы метаболизма происходят одновременно.

Анаболизм сосредоточен вокруг роста и строительства — организации молекул. В этом процессе маленькие простые молекулы превращаются в более крупные и сложные.Примером анаболизма является глюконеогенез. Это когда печень и почки производят глюкозу из неуглеводных источников.

Катаболизм — это то, что происходит, когда вы перевариваете пищу, и молекулы распадаются в организме для использования в качестве энергии. Большие сложные молекулы в организме разбиваются на более мелкие и простые. Пример катаболизма — гликолиз. Этот процесс почти противоположен глюконеогенезу.

Понимание анаболизма и катаболизма может помочь вам тренироваться более эффективно, чтобы сбросить жир и нарастить мышцы.Отдых также является частью уравнения. Ваш метаболизм работает, даже когда вы спите.

Ваши гормоны играют важную роль в этих процессах. Различные гормоны в организме связаны с анаболизмом и катаболизмом.

Анаболизм включает гормоны:

  • эстроген
  • инсулин
  • гормон роста
  • тестостерон

Катаболизм включает гормоны:

  • адреналин
  • глюкоин
  • кортизол
  • нарушение гормонов, например заболевания щитовидной железы, также может повлиять на эти процессы и общий метаболизм.Например, небольшое исследование бодибилдеров изучило их гормональный анаболико-катаболический баланс, когда они готовились к соревнованиям. Некоторые из мужчин продолжали тренироваться и питаться как обычно, в то время как другие были ограничены в энергии, чтобы уменьшить жир.

    В группе с ограничением энергии наблюдалось значительное снижение жировой и мышечной массы по сравнению с контрольной группой. Их уровни инсулина и гормона роста также снизились на протяжении всего исследования. Уровень тестостерона также снизился за 11–5 недель до соревнований.Другими словами, мужские «анаболические пути» были нарушены даже у тех, кто употреблял много белка.

    Исследователи пришли к выводу, что культуристам, возможно, придется использовать другие стратегии питания, чтобы предотвратить эффект катаболического распада перед соревнованиями.

    Поскольку анаболизм и катаболизм являются частями вашего метаболизма, эти процессы влияют на вес вашего тела. Помните: когда вы находитесь в анаболическом состоянии, вы наращиваете и поддерживаете мышечную массу. Когда вы находитесь в катаболическом состоянии, вы теряете общую массу, как жир, так и мышцы.

    Вы можете управлять своей массой тела, понимая эти процессы и свой общий метаболизм. И анаболический, и катаболический процессы со временем приводят к потере жира. Однако что касается вашего веса на весах для ванной в качестве ориентира, все может стать немного сложнее.

    • Если вы много занимаетесь анаболическими тренировками, вы будете сбрасывать жир и поддерживать или даже наращивать мышцы. Мышцы более плотные, чем жир, поэтому ваш вес и индекс массы тела могут оставаться выше, несмотря на более стройное телосложение.
    • Катаболические тренировки, с другой стороны, могут помочь вам сбросить лишние килограммы, отработав как жир, так и мышцы. Вы будете меньше весить, но при этом у вас будет гораздо меньше критической мышечной массы.

    Вы можете думать об этих процессах как об уравнении, чтобы предсказать, можете ли вы сбросить или набрать вес.

    Возьмите катаболизм (сколько энергии вырабатывает ваше тело) и вычтите анаболизм (сколько энергии использует ваше тело). Если вы производите больше, чем потребляете, вы можете набрать килограммы, так как энергия откладывается в виде жира.Если вы используете больше, чем производите, может произойти обратное.

    Конечно, есть исключения, особенно если у вас есть сопутствующие заболевания, которые влияют на ваши гормоны.

    Работа вашего тела по-разному может дать разные результаты. Кардио и силовые тренировки связаны с разными метаболическими процессами. Вот как получить максимальную отдачу от тренировок в зависимости от ваших целей.

    Катаболические

    Катаболические упражнения — это аэробные или кардио упражнения.Они могут включать в себя движения, такие как бег, плавание и езда на велосипеде, когда вы находитесь в устойчивом активном состоянии в течение относительно длительного периода времени. По данным Американского колледжа спортивной медицины, стремитесь выполнять по крайней мере следующее количество аэробных упражнений каждую неделю:

    • 150 минут средней интенсивности или
    • 75 минут высокой интенсивности

    Обычно это делится на три части. до пяти дней обучения. Если у вас в анамнезе есть проблемы со здоровьем, посоветуйтесь с врачом, чтобы получить одобрение, прежде чем начинать этот режим.

    Ваша частота сердечных сокращений, артериальное давление и дыхание повышаются во время катаболических упражнений. Во время потоотделения организм расщепляет гликоген, чтобы использовать его в качестве топлива. Когда у вас заканчиваются запасы углеводов, кортизол в организме использует аминокислоты для выработки энергии.

    В результате катаболические упражнения могут помочь вам построить здоровое сердце и легкие. Но они также могут привести к потере массы тела, как мышц, так и жира. Со временем он эффективно разрушает мышцы. Некоторые из этих мышц могут быть восстановлены во время сна или отдыха в течение восьми или более часов в результате спонтанных анаболических процессов.

    Anabolic

    Если вы хотите нарастить мышцы, слишком долгое нахождение в катаболическом состоянии может работать против вас. Это может уменьшить вашу мышечную массу и даже поставить под угрозу ваше общее состояние здоровья. Предотвращение катаболизма — это поддержание баланса между питанием, тренировками и восстановлением.

    Мышцы можно поддерживать, тренируясь три или четыре дня в неделю. Следующая примерная программа упражнений может помочь вам оставаться в строительном или анаболическом состоянии. Попробуйте сосредоточиться на одной области в день, отдыхая между ними.

    Анаболизм требует энергии для роста и развития. Катаболизм использует энергию для разрушения. Эти метаболические процессы работают вместе во всех живых организмах, чтобы производить энергию и восстанавливать клетки.

    Понимание разницы между анаболическими и катаболическими процессами может помочь вам достичь ваших целей в тренажерном зале и на весах. Чего бы вы ни хотели достичь, регулярные упражнения — кардио-тренировки и — плюс диета, богатая цельными продуктами, помогут вам оставаться здоровым как внутри, так и снаружи.

    Гормоны, масса тела и упражнения

    Обзор

    Ваш метаболизм включает в себя набор процессов, которые все живые существа используют для поддержания своего тела. Эти процессы включают как анаболизм, так и катаболизм. Оба помогают организовать молекулы, высвобождая и улавливая энергию, чтобы тело работало сильнее. Эти фазы метаболизма происходят одновременно.

    Анаболизм сосредоточен вокруг роста и строительства — организации молекул.В этом процессе маленькие простые молекулы превращаются в более крупные и сложные. Примером анаболизма является глюконеогенез. Это когда печень и почки производят глюкозу из неуглеводных источников.

    Катаболизм — это то, что происходит, когда вы перевариваете пищу, и молекулы распадаются в организме для использования в качестве энергии. Большие сложные молекулы в организме разбиваются на более мелкие и простые. Пример катаболизма — гликолиз. Этот процесс почти противоположен глюконеогенезу.

    Понимание анаболизма и катаболизма может помочь вам тренироваться более эффективно, чтобы сбросить жир и нарастить мышцы. Отдых также является частью уравнения. Ваш метаболизм работает, даже когда вы спите.

    Ваши гормоны играют важную роль в этих процессах. Различные гормоны в организме связаны с анаболизмом и катаболизмом.

    Анаболизм включает гормоны:

    • эстроген
    • инсулин
    • гормон роста
    • тестостерон

    Катаболизм включает гормоны:

    • адреналин
    • глюкоин
    • кортизол
    • нарушение гормонов, например заболевания щитовидной железы, также может повлиять на эти процессы и общий метаболизм.Например, небольшое исследование бодибилдеров изучило их гормональный анаболико-катаболический баланс, когда они готовились к соревнованиям. Некоторые из мужчин продолжали тренироваться и питаться как обычно, в то время как другие были ограничены в энергии, чтобы уменьшить жир.

      В группе с ограничением энергии наблюдалось значительное снижение жировой и мышечной массы по сравнению с контрольной группой. Их уровни инсулина и гормона роста также снизились на протяжении всего исследования. Уровень тестостерона также снизился за 11–5 недель до соревнований.Другими словами, мужские «анаболические пути» были нарушены даже у тех, кто употреблял много белка.

      Исследователи пришли к выводу, что культуристам, возможно, придется использовать другие стратегии питания, чтобы предотвратить эффект катаболического распада перед соревнованиями.

      Поскольку анаболизм и катаболизм являются частями вашего метаболизма, эти процессы влияют на вес вашего тела. Помните: когда вы находитесь в анаболическом состоянии, вы наращиваете и поддерживаете мышечную массу. Когда вы находитесь в катаболическом состоянии, вы теряете общую массу, как жир, так и мышцы.

      Вы можете управлять своей массой тела, понимая эти процессы и свой общий метаболизм. И анаболический, и катаболический процессы со временем приводят к потере жира. Однако что касается вашего веса на весах для ванной в качестве ориентира, все может стать немного сложнее.

      • Если вы много занимаетесь анаболическими тренировками, вы будете сбрасывать жир и поддерживать или даже наращивать мышцы. Мышцы более плотные, чем жир, поэтому ваш вес и индекс массы тела могут оставаться выше, несмотря на более стройное телосложение.
      • Катаболические тренировки, с другой стороны, могут помочь вам сбросить лишние килограммы, отработав как жир, так и мышцы. Вы будете меньше весить, но при этом у вас будет гораздо меньше критической мышечной массы.

      Вы можете думать об этих процессах как об уравнении, чтобы предсказать, можете ли вы сбросить или набрать вес.

      Возьмите катаболизм (сколько энергии вырабатывает ваше тело) и вычтите анаболизм (сколько энергии использует ваше тело). Если вы производите больше, чем потребляете, вы можете набрать килограммы, так как энергия откладывается в виде жира.Если вы используете больше, чем производите, может произойти обратное.

      Конечно, есть исключения, особенно если у вас есть сопутствующие заболевания, которые влияют на ваши гормоны.

      Работа вашего тела по-разному может дать разные результаты. Кардио и силовые тренировки связаны с разными метаболическими процессами. Вот как получить максимальную отдачу от тренировок в зависимости от ваших целей.

      Катаболические

      Катаболические упражнения — это аэробные или кардио упражнения.Они могут включать в себя движения, такие как бег, плавание и езда на велосипеде, когда вы находитесь в устойчивом активном состоянии в течение относительно длительного периода времени. По данным Американского колледжа спортивной медицины, стремитесь выполнять по крайней мере следующее количество аэробных упражнений каждую неделю:

      • 150 минут средней интенсивности или
      • 75 минут высокой интенсивности

      Обычно это делится на три части. до пяти дней обучения. Если у вас в анамнезе есть проблемы со здоровьем, посоветуйтесь с врачом, чтобы получить одобрение, прежде чем начинать этот режим.

      Ваша частота сердечных сокращений, артериальное давление и дыхание повышаются во время катаболических упражнений. Во время потоотделения организм расщепляет гликоген, чтобы использовать его в качестве топлива. Когда у вас заканчиваются запасы углеводов, кортизол в организме использует аминокислоты для выработки энергии.

      В результате катаболические упражнения могут помочь вам построить здоровое сердце и легкие. Но они также могут привести к потере массы тела, как мышц, так и жира. Со временем он эффективно разрушает мышцы. Некоторые из этих мышц могут быть восстановлены во время сна или отдыха в течение восьми или более часов в результате спонтанных анаболических процессов.

      Anabolic

      Если вы хотите нарастить мышцы, слишком долгое нахождение в катаболическом состоянии может работать против вас. Это может уменьшить вашу мышечную массу и даже поставить под угрозу ваше общее состояние здоровья. Предотвращение катаболизма — это поддержание баланса между питанием, тренировками и восстановлением.

      Мышцы можно поддерживать, тренируясь три или четыре дня в неделю. Следующая примерная программа упражнений может помочь вам оставаться в строительном или анаболическом состоянии. Попробуйте сосредоточиться на одной области в день, отдыхая между ними.

      Анаболизм требует энергии для роста и развития. Катаболизм использует энергию для разрушения. Эти метаболические процессы работают вместе во всех живых организмах, чтобы производить энергию и восстанавливать клетки.

      Понимание разницы между анаболическими и катаболическими процессами может помочь вам достичь ваших целей в тренажерном зале и на весах. Чего бы вы ни хотели достичь, регулярные упражнения — кардио-тренировки и — плюс диета, богатая цельными продуктами, помогут вам оставаться здоровым как внутри, так и снаружи.

      Катаболизм — определение и примеры

      Определение катаболизма

      Катаболизм — это часть метаболизма , ответственная за разрушение сложных молекул на более мелкие. Другая часть метаболизма, анаболизм , превращает простые молекулы в более сложные. Во время катаболизма энергия высвобождается из разрушающихся связей больших молекул. Обычно эта энергия сохраняется в связях аденозинтрифосфата (АТФ).Катаболизм увеличивает концентрацию АТФ в клетке, поскольку он расщепляет питательные вещества и пищу. АТФ в таких высоких концентрациях с большей вероятностью откажется от своей энергии на высвобождение фосфата. Затем анаболизм использует эту энергию для объединения простых предшественников в сложные молекулы, которые добавляются к клетке и накапливают энергию для деления клетки.

      Многие пути катаболизма имеют аналогичные версии в анаболизме. Например, большие молекулы жира в пище организма должны расщепляться на мелкие жирные кислоты, из которых он состоит.Затем, чтобы организм мог запасать энергию на зиму, необходимо создавать и хранить большие молекулы жира. Катаболические реакции расщепляют жиры, а анаболические пути их восстанавливают. Эти метаболические пути часто используют одни и те же ферменты. Чтобы снизить вероятность того, что эти пути будут препятствовать развитию друг друга, они часто подавляют друг друга и у эукариот разделены на разные органеллы.

      Примеры катаболизма

      Углеводный и липидный катаболизм

      Почти все организмы используют сахар , глюкозу в качестве источника энергии и углеродных цепей.Глюкоза хранится организмами в более крупных молекулах, называемых полисахаридами . Эти полисахариды могут быть крахмалом, гликогеном или другими простыми сахарами, такими как сахароза. Когда клеткам животного нужна энергия, они посылают сигналы тем частям тела, которые хранят глюкозу, или потребляют пищу. Глюкоза выделяется из углеводов специальными ферментами в первой стадии катаболизма. Затем глюкоза распределяется по организму, чтобы другие клетки использовали ее в качестве энергии. Катаболический путь , гликолиз , далее расщепляет глюкозу, высвобождая энергию, которая хранится в АТФ.Из глюкозы образуются молекулы пирувата. Дальнейшие катаболические пути создают ацетат , который является ключевой промежуточной молекулой метаболизма. Ацетат может состоять из самых разных молекул, от фосфолипидов до молекул пигмента, гормонов и витаминов.

      Жиры, представляющие собой большие липидные молекулы, также расщепляются в процессе метаболизма с образованием энергии и других молекул. Как и углеводы, липиды хранятся в виде больших молекул, но могут быть расщеплены на отдельные жирные кислоты.Эти жирные кислоты затем превращаются посредством бета-окисления в ацетат. Опять же, ацетат может использоваться анаболизмом для производства более крупных молекул или как часть цикла лимонной кислоты , который управляет дыханием и производством АТФ. Животные используют жиры для хранения большого количества энергии для будущего использования. В отличие от крахмала и углеводов, липиды гидрофобны и исключают воду. Таким образом можно сохранить много энергии без того, чтобы тяжелый вес воды замедлял работу организма.

      Большинство катаболических путей конвергентно в том смысле, что они заканчиваются одной и той же молекулой. Это позволяет организмам потреблять и накапливать энергию в различных формах, в то же время имея возможность производить все молекулы, в которых они нуждаются, в анаболических путях. Другие катаболические пути, такие как катаболизм белков, обсуждаемый ниже, создают различные промежуточные молекулы — предшественники, известные как аминокислот , для создания новых белков.

      Катаболизм белков

      Все известные в мире белки состоят из одних и тех же 20 аминокислот.Это означает, что белки растений, животных и бактерий представляют собой всего лишь разные комбинации 20 аминокислот. Когда организм потребляет меньший организм, весь белок в этом организме должен перевариваться в процессе катаболизма. Ферменты, известные как протеиназы , разрывают связи между аминокислотами в каждом белке, пока кислоты не будут полностью разделены. После разделения аминокислоты могут быть распределены по клеткам организма. Согласно ДНК организма, аминокислоты будут рекомбинированы в новые белки.

      Если источник глюкозы отсутствует или имеется слишком много аминокислот, молекулы вступят в дальнейшие катаболические пути и распадутся на углеродные скелеты. Эти небольшие молекулы могут быть объединены в глюконеогенез для создания новой глюкозы, которую клетки могут использовать в качестве энергии или накапливать в больших молекулах. Во время голодания клеточные белки могут подвергаться катаболизму, позволяя организму выживать в собственных тканях, пока не будет найдено больше пищи. Таким образом, организмы могут очень долго жить с небольшим количеством воды.Это делает их более устойчивыми к изменяющимся условиям окружающей среды.

      • Анаболизм — Часть метаболизма, которая строит большие молекулы из более мелких.
      • Метаболизм — Комбинация анаболизма и катаболизма или всех ферментативных реакций в клетке.
      • Метаболический путь — Последовательные химические реакции, организуемые внутри клеток.
      • Катаболический путь — Одиночная серия реакций, разрушающих определенную молекулу.

      Тест

      1. Дрожжи — это одноклеточные организмы, используемые для производства алкоголя. В среде с низким содержанием кислорода или его отсутствием дрожжи создают спирт как побочный продукт высвобождения энергии из глюкозы. Является ли производство алкоголя частью анаболического пути, катаболического пути или ни одного из них?
      A. Анаболический путь
      B. Катаболический путь
      C. Ни то, ни другое

      Ответ на вопрос № 1

      B правильный.Хотя алкоголь является побочным продуктом, он возникает во время катаболизма глюкозы. Как и все клетки, дрожжи должны использовать глюкозу для получения энергии. Без кислорода дрожжи развили катаболический путь, известный как ферментация , в котором энергия все еще может собираться, но без кислорода. Вместо этого спирты создаются и выбрасываются в окружающую среду. Пивоварни, виноградники и ликеро-водочные заводы используют этот хитрый прием с глюкозой для создания спирта из сахаров. Из разных источников сахара получаются напитки с разными вкусами. В вине используется виноградный сахар, в пиве — ячменный крахмал, а в других спиртных напитках используется множество различных сахаров, например, картофель в водке и рис в саке.

      2. Плотоядные животные могут производить всю необходимую им глюкозу из животного белка. Всю необходимую глюкозу травоядные животные получают из растений. Почему нельзя принуждать плотоядных есть растения или заставлять травоядных есть мясо, чтобы получить энергию?
      A. Они не умеют.
      B. Они не производят необходимых ферментов.
      C. Могут! Всеядное животное — это просто хищник, который научился есть растения.

      Ответ на вопрос № 2

      B правильный. Облигатные плотоядные животные могут есть только мясо, потому что у них отсутствуют необходимые катаболические пути, разрушающие растения. Эволюция, выбирая неиспользуемые и неэффективные пути, выбирает организмы, заполняющие определенные ниши. Если в этой нише очень мало растительного материала, катаболизм меняется, и определенные пути теряются. Таким образом, даже если вы научите плотоядное животное есть и собирать растения, его организм не сможет перерабатывать питательные вещества.Точно так же травоядное животное может получать питательные вещества только из растительного сырья. Всеядные животные эволюционировали в нише, для использования которой требуется энергия из обоих источников. У этих животных катаболизм способен переваривать оба вида пищи.

      3. Бактерии, не имеющие специализированных отделов внутри своих клеток, должны регулировать анаболизм и катаболизм, чтобы работать вместе. Ученый добавляет к бактериям химическое вещество, которое отключает анаболизм, постоянно обеспечивая только катаболизм.Что будет с клеткой?
      A. Он умрет.
      B. Будет расти.
      C. Он будет производить много энергии.

      Ответ на вопрос № 3

      правильный. В то время как катаболизм будет производить много энергии, в конечном итоге у него закончатся молекулы для разложения, и энергия прекратится. Клетка не смогла бы расти без анаболизма, создающего новые молекулы. Таким образом, даже если клетка может обеспечивать энергию, без процесса, который восстанавливает и добавляет к клетке, она в конечном итоге развалится.И анаболизм, и катаболизм необходимы для обеспечения нормального метаболизма в организме.

      Обзор метаболических реакций | Анатомия и физиология II

      Цели обучения

      К концу этого раздела вы сможете:

      • Опишите процесс разложения полимеров на мономеры
      • Опишите процесс объединения мономеров в полимеры
      • Обсудить роль АТФ в метаболизме
      • Объяснение окислительно-восстановительных реакций
      • Опишите гормоны, регулирующие анаболические и катаболические реакции

      В организме постоянно происходят обменные процессы. Метаболизм — это сумма всех химических реакций, участвующих в катаболизме и анаболизме. Реакции, управляющие расщеплением пищи для получения энергии, называются катаболическими реакциями. И наоборот, анаболические реакции используют энергию, производимую катаболическими реакциями, для синтеза более крупных молекул из более мелких, например, когда организм формирует белки, связывая вместе аминокислоты. Оба набора реакций имеют решающее значение для поддержания жизни.

      Поскольку катаболические реакции производят энергию, а анаболические реакции используют энергию, в идеале использование энергии должно уравновешивать произведенную энергию.Если чистое изменение энергии положительное (катаболические реакции выделяют больше энергии, чем используют анаболические реакции), то организм накапливает избыточную энергию, создавая молекулы жира для длительного хранения. С другой стороны, если чистое изменение энергии отрицательное (катаболические реакции выделяют меньше энергии, чем используют анаболические реакции), организм использует накопленную энергию для компенсации дефицита энергии, высвобождаемой катаболизмом.

      Катаболические реакции

      Катаболические реакции расщепляют большие органические молекулы на более мелкие, высвобождая энергию, содержащуюся в химических связях. Эти высвобождения энергии (преобразования) не эффективны на 100 процентов. Количество выделяемой энергии меньше общего количества, содержащегося в молекуле. Примерно 40 процентов энергии, выделяемой в результате катаболических реакций, напрямую передается высокоэнергетической молекуле аденозинтрифосфата (АТФ). АТФ, энергетическая валюта клеток, можно немедленно использовать для питания молекулярных машин, которые поддерживают функции клеток, тканей и органов. Это включает в себя создание новой ткани и восстановление поврежденной ткани.АТФ также можно хранить для удовлетворения будущих потребностей в энергии. Остальные 60 процентов энергии, высвобождаемой в результате катаболических реакций, выделяется в виде тепла, которое поглощают ткани и жидкости организма.

      Структурно молекулы АТФ состоят из аденина, рибозы и трех фосфатных групп. Химическая связь между второй и третьей фосфатными группами, называемая высокоэнергетической связью, представляет собой самый большой источник энергии в клетке. Это первая связь, которую разрушают катаболические ферменты, когда клеткам требуется энергия для работы.Продуктами этой реакции являются молекула аденозиндифосфата (АДФ) и одиночная фосфатная группа (P i ). АТФ, АДФ и P i постоянно проходят через реакции, которые создают АТФ и накапливают энергию, и реакции, которые разрушают АТФ и высвобождают энергию.

      Рис. 1. Аденозинтрифосфат (АТФ) — это энергетическая молекула клетки. Во время катаболических реакций создается АТФ, и энергия сохраняется до тех пор, пока она не понадобится во время анаболических реакций.

      Энергия АТФ управляет всеми функциями организма, такими как сокращение мышц, поддержание электрического потенциала нервных клеток и поглощение пищи в желудочно-кишечном тракте.Метаболические реакции, производящие АТФ, происходят из разных источников.

      Рис. 2. Во время катаболических реакций белки расщепляются на аминокислоты, липиды — на жирные кислоты, а полисахариды — на моносахариды. Эти строительные блоки затем используются для синтеза молекул в анаболических реакциях.

      Из четырех основных макромолекулярных групп (углеводы, липиды, белки и нуклеиновые кислоты), которые перерабатываются в процессе пищеварения, углеводы считаются наиболее распространенным источником энергии для питания организма.Они принимают форму сложных углеводов, полисахаридов, таких как крахмал и гликоген, или простых сахаров (моносахаридов), таких как глюкоза и фруктоза. Катаболизм сахара расщепляет полисахариды на отдельные моносахариды. Среди моносахаридов глюкоза является наиболее распространенным топливом для производства АТФ в клетках, и поэтому существует ряд механизмов эндокринного контроля, регулирующих концентрацию глюкозы в кровотоке. Избыточная глюкоза либо накапливается в качестве запаса энергии в печени и скелетных мышцах в виде сложного полимерного гликогена, либо превращается в жир (триглицерид) в жировых клетках (адипоцитах).

      Среди липидов (жиров) триглицериды чаще всего используются для получения энергии посредством метаболического процесса, называемого β-окислением. Около половины избыточного жира хранится в адипоцитах, которые накапливаются в подкожной клетчатке под кожей, тогда как остальная часть хранится в адипоцитах в других тканях и органах.

      Белки, являющиеся полимерами, можно разделить на их мономеры, отдельные аминокислоты. Аминокислоты можно использовать в качестве строительных блоков новых белков или далее расщеплять для производства АТФ.Когда человек хронически голодает, такое использование аминокислот для производства энергии может привести к истощению организма, поскольку расщепляется все больше и больше белков.

      Нуклеиновые кислоты присутствуют в большинстве продуктов, которые вы едите. Во время пищеварения нуклеиновые кислоты, включая ДНК и различные РНК, распадаются на составляющие их нуклеотиды. Эти нуклеотиды легко абсорбируются и транспортируются по всему телу, чтобы использоваться отдельными клетками во время метаболизма нуклеиновых кислот.

      Анаболические реакции

      В отличие от катаболических реакций, анаболических реакций включают соединение более мелких молекул в более крупные. Анаболические реакции объединяют моносахариды с образованием полисахаридов, жирные кислоты с образованием триглицеридов, аминокислоты с образованием белков и нуклеотиды с образованием нуклеиновых кислот. Эти процессы требуют энергии в виде молекул АТФ, генерируемых катаболическими реакциями. Анаболические реакции, также называемые реакциями биосинтеза , создают новые молекулы, которые образуют новые клетки и ткани и оживляют органы.

      Гормональная регуляция метаболизма

      Катаболические и анаболические гормоны в организме помогают регулировать метаболические процессы. Катаболические гормоны стимулируют расщепление молекул и выработку энергии. К ним относятся кортизол, глюкагон, адреналин / адреналин и цитокины. Все эти гормоны мобилизуются в определенное время для удовлетворения потребностей организма. Анаболические гормоны необходимы для синтеза молекул и включают гормон роста, инсулиноподобный фактор роста, инсулин, тестостерон и эстроген. В следующей таблице обобщены функции каждого из катаболических гормонов, а в следующей таблице обобщены функции каждого из них. анаболические гормоны.

      Таблица 1. Катаболические гормоны
      Гормон Функция
      Кортизол Высвобождается из надпочечников в ответ на стресс; его основная роль заключается в повышении уровня глюкозы в крови путем глюконеогенеза (расщепления жиров и белков)
      Глюкагон Высвобождается из альфа-клеток поджелудочной железы при голодании или когда организму требуется дополнительная энергия; он стимулирует расщепление гликогена в печени для повышения уровня глюкозы в крови; его действие противоположно инсулину; глюкагон и инсулин являются частью системы отрицательной обратной связи, которая стабилизирует уровень глюкозы в крови
      Адреналин / эпинефрин Высвобождается в ответ на активацию симпатической нервной системы; увеличивает частоту сердечных сокращений и сократимость сердца, сужает кровеносные сосуды, является бронходилататором, который открывает (расширяет) бронхи легких для увеличения объема воздуха в легких и стимулирует глюконеогенез
      Таблица 2. Анаболические гормоны
      Гормон Функция
      Гормон роста (GH) Синтезируется и выделяется гипофизом; стимулирует рост клеток, тканей и костей
      Инсулиноподобный фактор роста (IGF) Стимулирует рост мышц и костей, одновременно подавляя гибель клеток (апоптоз)
      Инсулин Производится бета-клетками поджелудочной железы; играет важную роль в метаболизме углеводов и жиров, контролирует уровень глюкозы в крови и способствует поглощению глюкозы клетками организма; заставляет клетки мышц, жировой ткани и печени поглощать глюкозу из крови и хранить ее в печени и мышцах в виде глюкагона; его действие противоположно гликогену; глюкагон и инсулин являются частью системы отрицательной обратной связи, которая стабилизирует уровень глюкозы в крови
      Тестостерон Вырабатывается семенниками у мужчин и яичниками у женщин; стимулирует увеличение мышечной массы и силы, а также рост и укрепление костей
      Эстроген Вырабатывается в основном яичниками, а также печенью и надпочечниками; его анаболические функции включают ускорение метаболизма и отложение жира

      Нарушения метаболических процессов: синдром Кушинга и болезнь Аддисона

      Как и следовало ожидать для фундаментального физиологического процесса, такого как метаболизм, ошибки или сбои в метаболической обработке приводят к патофизиологии или, если их не исправить, к болезненному состоянию. Болезни обмена веществ чаще всего возникают в результате неправильной работы белков или ферментов, которые имеют решающее значение для одного или нескольких метаболических путей. Нарушение функции белка или фермента может быть следствием генетического изменения или мутации. Однако нормально функционирующие белки и ферменты также могут иметь пагубные последствия, если их доступность не соответствует метаболическим потребностям. Например, чрезмерное производство гормона кортизола вызывает синдром Кушинга. Клинически синдром Кушинга характеризуется быстрым увеличением веса, особенно в области туловища и лица, депрессией и тревогой.Стоит упомянуть, что опухоли гипофиза, вырабатывающие адренокортикотропный гормон (АКТГ), который впоследствии стимулирует кору надпочечников высвобождать избыточное количество кортизола, имеют аналогичные эффекты. Этот косвенный механизм гиперпродукции кортизола называется болезнью Кушинга.

      Пациенты с синдромом Кушинга могут иметь высокий уровень глюкозы в крови и имеют повышенный риск ожирения. Они также показывают медленный рост, накопление жира между плечами, слабые мышцы, боли в костях (потому что кортизол заставляет белки расщепляться с образованием глюкозы в результате глюконеогенеза) и утомляемость.Другие симптомы включают чрезмерное потоотделение (гипергидроз), расширение капилляров и истончение кожи, что может привести к легким синякам. Все методы лечения синдрома Кушинга направлены на снижение чрезмерного уровня кортизола. В зависимости от причины избытка, лечение может быть таким простым, как прекращение использования мазей с кортизолом. В случае опухолей часто используется хирургическое вмешательство для удаления поражающей опухоль. Если операция нецелесообразна, лучевая терапия может использоваться для уменьшения размера опухоли или удаления частей коры надпочечников.Наконец, доступны лекарства, которые могут помочь регулировать количество кортизола.

      Недостаточное производство кортизола также проблематично. Надпочечниковая недостаточность, или болезнь Аддисона, характеризуется снижением выработки кортизола надпочечниками. Это может быть следствием нарушения работы надпочечников — они не вырабатывают достаточного количества кортизола — или же следствием снижения доступности АКТГ из гипофиза. Пациенты с болезнью Аддисона могут иметь низкое кровяное давление, бледность, крайнюю слабость, утомляемость, медленные или вялые движения, головокружение и тягу к соли из-за потери натрия и высокого уровня калия в крови (гиперкалиемия).Жертвы также могут страдать от потери аппетита, хронической диареи, рвоты, поражений во рту и неоднородного цвета кожи. Диагностика обычно включает анализы крови и визуализацию надпочечников и гипофиза. Лечение включает заместительную терапию кортизолом, которую обычно необходимо продолжать всю жизнь.

      Реакции окисления-восстановления

      Химические реакции, лежащие в основе метаболизма, включают перенос электронов от одного соединения к другому посредством процессов, катализируемых ферментами.Электроны в этих реакциях обычно исходят от атомов водорода, которые состоят из электрона и протона. Молекула отдает атом водорода в форме иона водорода (H + ) и электрона, разбивая молекулу на более мелкие части. Потеря электрона или окисление высвобождает небольшое количество энергии; и электрон, и энергия затем передаются другой молекуле в процессе восстановления или получения электрона. Эти две реакции всегда происходят вместе в окислительно-восстановительной реакции (также называемой окислительно-восстановительной реакцией) — когда электрон проходит между молекулами, донор окисляется, а реципиент восстанавливается.Окислительно-восстановительные реакции часто происходят последовательно, так что восстановленная молекула впоследствии окисляется, передавая не только только что полученный электрон, но и полученную энергию. По мере развития серии реакций накапливается энергия, которая используется для объединения P i и АДФ с образованием АТФ, высокоэнергетической молекулы, которую организм использует в качестве топлива.

      Реакции окисления и восстановления катализируются ферментами, которые запускают удаление атомов водорода. Коферменты работают с ферментами и принимают атомы водорода.Двумя наиболее распространенными коферментами окислительно-восстановительных реакций являются никотинамидадениндинуклеотид (NAD) и флавинадениндинуклеотид (FAD) . Их соответствующие восстановленные коферменты — это NADH и FADH 2 , которые представляют собой энергосодержащие молекулы, используемые для передачи энергии во время создания АТФ.

      Обзор главы

      Метаболизм — это сумма всех катаболических (расщепление) и анаболических (синтез) реакций в организме.Скорость метаболизма измеряет количество энергии, используемой для поддержания жизни. Организм должен принимать достаточное количество пищи, чтобы поддерживать скорость метаболизма, если он хочет выжить очень долго.

      Катаболические реакции расщепляют более крупные молекулы, такие как углеводы, липиды и белки из принятой пищи, на составляющие более мелкие части. Они также включают распад АТФ, который высвобождает энергию, необходимую для метаболических процессов во всех клетках по всему телу.

      Анаболические реакции, или биосинтетические реакции, синтезируют более крупные молекулы из более мелких составных частей, используя АТФ в качестве источника энергии для этих реакций.Анаболические реакции увеличивают костную, мышечную массу и создают новые белки, жиры и нуклеиновые кислоты. Реакции окисления-восстановления переносят электроны через молекулы, окисляя одну молекулу и восстанавливая другую, и собирая высвободившуюся энергию для преобразования P i и АДФ в АТФ. Ошибки в метаболизме изменяют переработку углеводов, липидов, белков и нуклеиновых кислот и могут привести к ряду болезненных состояний.

      Самопроверка

      Ответьте на вопрос (ы) ниже, чтобы увидеть, насколько хорошо вы понимаете темы, затронутые в предыдущем разделе.

      Вопросы о критическом мышлении

      1. Опишите, как можно изменить метаболизм.
      2. Опишите, как лечить болезнь Аддисона.

      Показать ответы

      1. Увеличение или уменьшение сухой мышечной массы приведет к увеличению или уменьшению метаболизма.
      2. Болезнь Аддисона характеризуется низким уровнем кортизола. Один из способов лечения болезни — дать пациенту кортизол.

      Глоссарий

      анаболических гормонов: гормонов, стимулирующих синтез новых, более крупных молекул

      анаболических реакций: реакций, в результате которых молекулы меньшего размера превращаются в молекулы большего размера

      реакций биосинтеза: реакций, которые создают новые молекулы, также называемые анаболическими реакциями

      катаболических гормонов: гормонов, которые стимулируют распад более крупных молекул

      катаболических реакций: реакций, при которых более крупные молекулы расщепляются на составные части

      FADH 2 : высокоэнергетическая молекула, необходимая для гликолиза

      флавинадениндинуклеотид (FAD): кофермент , используемый для производства FADH 2

      метаболизм: сумма всех катаболических и анаболических реакций, происходящих в организме

      НАДН: высокоэнергетическая молекула, необходимая для гликолиза

      никотинамидадениндинуклеотид (НАД): кофермент , используемый для производства НАДН

      окисление: потеря электрона

      реакция окисления-восстановления: (также, окислительно-восстановительная реакция) пара реакций, в которых электрон передается от одной молекулы к другой, окисляя одну и восстанавливая другую

      сокращение: набирание электрона

      23.

      7A: Катаболико-анаболическое устойчивое состояние — Medicine LibreTexts

      Катаболические реакции, разрушающие сложные молекулы, обеспечивают энергию, необходимую анаболическим реакциям для образования сложных молекул.

      ПРИМЕРЫ

      Младенцы в первые годы жизни стремительно растут, поэтому требуется преобразование достаточного количества топлива в энергию, необходимую для ускорения этого роста. Отсюда причина того, что когда большинство младенцев не спят, они обычно едят.

      Анаболические реакции требуют энергии.Химическая реакция, при которой АТФ превращается в АДФ, обеспечивает энергией этот метаболический процесс. Клетки могут сочетать анаболические реакции с катаболическими реакциями, которые высвобождают энергию, чтобы сформировать эффективный энергетический цикл. Катаболические реакции превращают химическое топливо в клеточную энергию, которая затем используется для инициирования энергозатратных анаболических реакций. АТФ, молекула с высокой энергией, соединяет анаболизм путем высвобождения свободной энергии. Эта энергия не приходит через разрыв фосфатных связей; вместо этого он высвобождается в результате гидратации фосфатной группы.

      Анаболизм и катаболизм : Катаболические реакции высвобождают энергию, в то время как анаболические реакции расходуют энергию.

      Анаболизм — это противоположность катаболизма. Например, синтез глюкозы — это анаболический процесс, а расщепление глюкозы — катаболический процесс. Анаболизм требует поступления энергии, описываемого как процесс потребления энергии («подъем в гору»). Катаболизм — это процесс «под уклон», при котором энергия высвобождается по мере того, как организм использует энергию.Анаболизм и катаболизм необходимо регулировать, чтобы избежать одновременного протекания двух процессов. У каждого процесса есть свой набор гормонов, которые включают и выключают эти процессы. Анаболические гормоны включают гормон роста, тестостерон и эстроген. Катаболические гормоны включают адреналин, кортизол и глюкагон. Баланс между анаболизмом и катаболизмом также регулируется циркадными ритмами, при этом такие процессы, как метаболизм глюкозы, колеблются, чтобы соответствовать нормальным периодам активности животного в течение дня.

      Анаболизм можно рассматривать как набор метаболических процессов, в которых синтез сложных молекул инициируется энергией, высвобождаемой в результате катаболизма. Эти сложные молекулы производятся в ходе систематического процесса из небольших и простых предшественников. Например, анаболическая реакция может начинаться с относительно простых молекул-предшественников (созданных ранее в результате катаболических реакций) и заканчиваться довольно сложными продуктами, такими как сахар, определенные липиды или даже ДНК, которая имеет чрезвычайно сложную физическую структуру.Повышенная сложность продуктов анаболических реакций также означает, что они более богаты энергией, чем их простые предшественники.

      Анаболические реакции представляют собой расходящиеся процессы. То есть относительно небольшое количество типов сырья используется для синтеза широкого спектра конечных продуктов, что приводит к увеличению размера ячеек, сложности или и того, и другого. Анаболические процессы отвечают за дифференциацию клеток и увеличение размеров тела. Этим процессам приписывается минерализация костей и мышечная масса.Анаболические процессы производят пептиды, белки, полисахариды, липиды и нуклеиновые кислоты. Эти молекулы включают все материалы живых клеток, такие как мембраны и хромосомы, а также специализированные продукты определенных типов клеток, такие как ферменты, антитела, гормоны и нейротрансмиттеры.

      Анаболические и катаболические (клеточный метаболизм): определение и примеры

      Клетки — это самые маленькие единицы живых существ, которые обладают всеми свойствами, связанными с жизнью.Одной из этих определяющих характеристик является метаболизм , или использование молекул или энергии, собранных из окружающей среды, для проведения биохимических реакций, необходимых для сохранения жизни и, в конечном итоге, для воспроизводства.

      Метаболические процессы, часто называемые метаболическими путями, можно разделить на анаболические или связанные с синтезом новых молекул и катаболические , которые включают распад существующих молекул.

      В просторечии анаболические процессы связаны со строительством дома и заменой таких вещей, как окна и водосточные желоба, по мере необходимости, а катаболические процессы — это обуздание изношенных или сломанных частей дома.Если это делать согласованно и в правильном темпе, дом будет существовать в максимально устойчивом состоянии, но никогда не будет пассивным.

      Обзор метаболизма

      Клетки и ткани, которые они формируют, постоянно подвергаются «двунаправленному» метаболизму, что означает, что, хотя одни вещи движутся в анаболическом направлении, другие — в противоположном.

      Это, возможно, более очевидно на уровне целых организмов: если вы сжигаете глюкозы во время спринта, чтобы догнать свою собаку (катаболический процесс), бумага, порезанная на вашей руке накануне, продолжает заживать (анаболический процесс). Но та же дихотомия действует и в отдельных клетках.

      Клеточные реакции катализируются особыми глобулярными белковыми молекулами, называемыми ферментами , которые по определению участвуют в химических реакциях, не меняясь в конце концов. Они значительно ускоряют реакции — иногда более чем в тысячу раз — и поэтому действуют как катализаторы .

      Анаболические реакции обычно требуют ввода энергии и, следовательно, эндотермические (в переводе «тепло внутрь»).Это имеет смысл; вы не можете нарастить или нарастить мышцы, если не поедите, при этом потребление пищи обычно зависит от интенсивности и продолжительности определенной активности.

      Катаболические реакции обычно экзотермические («тепло извне») и высвобождают энергию, большая часть которой используется клеткой в ​​форме аденозинтрифосфата (АТФ) и используется для других метаболических процессов.

      Субстраты метаболизма

      Основные структурные элементы тела и молекулы, необходимые для топлива, а также роста и замены тканей, состоят из мономеров или небольших повторяющихся звеньев в целом, называемых полимером .

      Эти единицы могут быть идентичными, как с молекулами глюкозы, организованными в длинные цепи запасающего топлива гликогена , или они могут быть похожими и иметь «ароматизаторы», как в случае нуклеиновых кислот и нуклеотидов, из которых они состоят.

      Три основных класса макроэлементов макромолекул в питании человека, называемые углеводами , белками и жирами , каждый состоит из своего собственного типа мономера.

      Глюкоза — это фундаментальный субстрат всей жизни на Земле, и каждая живая клетка способна метаболизировать ее для получения энергии.Как уже отмечалось, молекулы глюкозы могут быть связаны в «цепочки» с образованием гликогена, который у человека находится в основном в мышцах и печени. Белки состоят из мономеров, взятых из мешка с 20 различными аминокислотами.

      Жиры не являются полимерами, потому что они состоят из трех жирных кислот, связанных с «основной цепью» трехуглеродной молекулы глицерин . Когда они растут или сжимаются, это происходит за счет добавления или удаления атомов на концах цепочек жирных кислот, как в случае с заглавной буквой «E», где вертикальная часть остается того же размера, но горизонтальные полосы различаются по длине.

      Что такое анаболический метаболизм?

      Представьте, что вам дали коробку с игрушечными строительными блоками неограниченного размера. Многие из них идентичны, за исключением цвета; другие имеют разные размеры, но могут быть соединены вместе; третьи не предназначены для подключения независимо от выбранной вами конфигурации. Вы можете создавать идентичные конструкции, которые включают, скажем, от трех до пяти частей, и связывать их вместе таким образом, чтобы соединения этих конструкций также были идентичными.

      По сути, это анаболический метаболизм в действии.Отдельные группы от трех до пяти игрушек представляют собой «мономеры», а готовый продукт аналогичен «полимеру». И в клетках, вместо того, чтобы делать работу по соединению частей вместе, ферменты направляют процесс. В обоих случаях ключевым аспектом является ввод энергии для генерации молекул большей сложности (и, как правило, большего размера).

      Примеры анаболических процессов включают, помимо синтеза белка, глюконеогенез (синтез глюкозы из различных предшествующих субстратов), синтез жирных кислот, липогенез (синтез жиров из жирных кислот и глицерина) и образование мочевины и кетоновых тел .

      Что такое катаболический метаболизм?

      В большинстве случаев катаболические процессы на уровне индивидуальных реакций — это не просто соответствующие анаболические реакции, протекающие в обратном порядке, хотя многие из них одинаковы. Обычно задействованы разные ферменты.

      Например, первая стадия гликолиза (катаболизма глюкозы) — это добавление фосфатной группы к глюкозе с помощью фермента гексокиназы с образованием глюкозо-6-фосфата.Но заключительный этап глюконеогенеза, удаление фосфата из глюкозо-6-фосфата с образованием глюкозы, катализируется глюкозо-6-фосфатазой.

      Другими жизненно важными катаболическими процессами, происходящими в вашем теле, являются гликогенолиз (распад гликогена в мышцах или печени), липолиз (удаление жирных кислот из глицерина), бета-окисление («сжигание» жирные кислоты), а также разложение кетонов, белков или отдельных аминокислот.

      Поддержание баланса анаболического и катаболического метаболизма

      Чтобы поддерживать организм в гармонии с его потребностями в режиме реального времени, требуется высокая степень реакции и координации.Скорость анаболических и катаболических реакций можно контролировать, варьируя количество фермента или субстрата, мобилизованного в данной части клетки, или с помощью ингибирования обратной связи , при котором накопление продукта сигнализирует предшествующей реакции о более медленном протекании.

      Кроме того, что важно с точки зрения целостной визуализации метаболизма, субстраты из одного пути макроэлементов могут быть шунтированы в путь другого по мере необходимости.

      Примером такой интеграции путей является то, что аминокислоты аланин и глутамин, помимо того, что служат строительными блоками белков, также могут вступать в глюконеогенез.Для этого им необходимо избавиться от азота, который обрабатывается ферментами, называемыми трансаминазами.

      • Глицерин, продукт липолиза, также может вступать в путь глюконеогенеза, который в широком смысле является одним из способов получения сахара из жира. Однако на сегодняшний день нет доказательств того, что продукты окисления жирных кислот могут вступать в глюконеогенез.

      Физические упражнения: рост мышц и сжигание жира

      Физическая подготовка — главная общественная проблема в странах, где люди часто могут позволить себе роскошь дополнительных упражнений.

      Многие из распространенных методов сильно нацелены на тот или иной процесс, например, поднятие тяжестей для наращивания мышечной массы (анаболические упражнения) или использование эллиптического тренажера или беговой дорожки для «кардио» и снижения мышечной или жировой массы ( или веса тела) для похудания (катаболические упражнения).

      Одним из примеров работы обеих систем является марафонец, который готовится к забегу на 42,2 км (26,2 мили) и пробегает его. За неделю до этого многие люди намеренно употребляют богатую углеводами пищу, отдыхая для физических усилий.

      Из-за ежедневных беговых тренировок и постоянной потребности в замене катаболизированного топлива у этих спортсменов высокий уровень активности фермента гликогенсинтазы, который позволяет их мышцам и печени синтезировать гликоген с необычайной жадностью.

      Во время марафона этот гликоген превращается в глюкозу, чтобы бегун работал часами напролет, хотя эти спортсмены обычно употребляют источники глюкозы (например, спортивные напитки) на протяжении всего соревнования, а также для предотвращения «удара о стену».»

      • Неспособность организма вырабатывать глюкозу из жирных кислот является причиной того, что углеводы считаются критически важными для высокоинтенсивных и продолжительных упражнений, поскольку бета-окисление жирных кислот не приводит к выработке достаточного количества АТФ, чтобы идти в ногу с метаболическими потребностями.

      Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


      Настройка вашего браузера для приема файлов cookie

      Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

      • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
      • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.
        Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
      • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
      • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г.,
        браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
      • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.
        Вы должны отключить приложение при входе в систему или уточнить у системного администратора.

      Почему этому сайту требуются файлы cookie?

      Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie
      потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


      Что сохраняется в файле cookie?

      Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *