Воскресенье, 5 мая

Где находится магний – 35 продуктов питания где магния больше всего таблица

Магний: кому он нужен и в каких продуктах содержится? | Правильное питание | Здоровье

Все перепуталось

Соединительная ткань «разбросана» по организму и присутствует практически во всех органах. Она состоит из особых волокон, которые в норме расположены в строго определенном порядке. У слабой соединительной ткани они перепутаны, «лежат» неровно.

О слабости соединительной ткани свидетельствуют варикозная болезнь вен, близорукость, грыжа, искривление позвоночника. Ее можно определить и по ненормально гибким суставам, частым вывихам.

Типичный портрет человека со слабостью соединительной ткани – худой, сутулый, в очках, с плоскостопием. А если ему сделать эхокардиограмму, то наверняка обнаружится и еще одна патология – пролапс, или провисание створок митрального клапана сердца.

Строительный материал

Слабость соединительной ткани может быть обусловлена генетически. Однако зачастую в развитие заболевания наиболее значимый вклад вносит… наше питание. Дело в том, что для синтеза волокон соединительной ткани необходим магний. При его недостатке ускоряются процессы ее разрушения, она становится менее прочной и эластичной.

Чтобы узнать, достаточно ли магния поступает в организм, попросите в поликлинике отправить вашу кровь на специальный анализ эритроцитов – он проводится с помощью метода атомной абсорциометрии. При своевременном выявлении дефицита вы сможете избежать многих неприятностей.






Суточная норма потребления магния (в мг)
до 30 лет 400
после 30 лет 420
до 30 лет 310
после 30 лет 320

Налегайте на фасоль

Магний, как и остальные микроэлементы, мы получаем вместе с пищей и водой. Его много в шпинате и спарже – продуктах для нас достаточно экзотических, но отнюдь не недоступных. Есть этот полезный элемент в пшеничных отрубях, орехах и семечках, фасоли, зеленых яблоках и салатах, зеленом сладком перце.

Неплохо также принимать добавки с магнием, особенно эффективны те, где он соединен с оротовой кислотой, природным компонентом, участвующим в обмене веществ. Они необходимы начинающим гипертоникам и больным со стажем, чтобы снизить риск инсульта, людям с пролапсом митрального клапана, после перенесенного инфаркта миокарда, тем, кто подвержен стрессам, и тем, кто пользуется мочегонными препаратами (они выводят из организма магний). И, конечно, всем людям с дефицитом магния, даже если они чувствуют себя здоровыми.













Продукты Содержание магния (мг/100 г)
Пшеничные отруби 611
Тыквенные семечки 534
Кунжутное семя 351
Миндаль 304
Кедровые орехи 234
Арахис 185
Грецкие орехи 169
Шпинат 87
Фасоль 63
Финики сушеные 59
Семечки подсолнечника 58


Читайте в соцсетях!

aif.ru

В каких продуктах содержится магний

Название продукта Содержание магния на 100 г продукта

Мясо

Гусь 30 мг
Печень куриная, жареная 27 мг
Бекон 27 мг
Язык говяжий, отварной 26 мг
Гусь, жаренный 25 мг
Курица, жареная 25 мг
Кролик 25 мг
Перепел 25 мг
Индейка, жареная 24 мг
Мясо телячье 24 мг
Конина 23 мг
Печень баранина, отварная 22 мг
Мясо говяжье 22 мг
Оленина 21 мг
Печень говяжья, тушеная 21 мг
Утка, жареная 21 мг
Язык свиной, тушеный 20 мг
Мясо баранины 20 мг
Индейка 19 мг
Индейка, отварная 19 мг
Курица, отварная 19 мг
Курица 18 мг
Свиное сердце 18 мг
Почки говяжьи 18 мг
Язык бараний, тушеный 16 мг
Мозги говяжьи 16 мг
Утка 15 мг
Печень свиная, тушеная 14 мг

Рыба и морепродукты

Кальмар 90 мг
Анчоус 60 мг
Окунь 60 мг
Креветка, мясо 60 мг
Минтай 55 мг
Окунь, запеченный 53 мг
Скумбрия 50 мг
Сельдь, копченная 46 мг
Сельдь, запеченная 41 мг
Навага 40 мг
Краб, вареный 39 мг
Карп, запеченный 38 мг
Мидии, вареные 37 мг
Лосось, запеченный 37 мг
Креветки, вареные 37 мг
Щука 35 мг
Сабля 35 мг
Пеламида 35 мг
Мидии 34 мг
Горбуша, запеченная 32 мг
Сельдь 32 мг
Кета 30 мг
Горбуша 30 мг
Треска 30 мг
Мойва 30 мг
Тунец 30 мг
Лосось 29 мг
Карп 29 мг
Кета, запеченная 28 мг
Судак 25 мг
Судак 25 мг
Салака 20 мг
Сом 20 мг

Молочные и яйцепродукты

Сыр Голландский 55 мг
Сыр Чеддер 54 мг
Сыр Пошехонский 45 мг
Сыр Швейцарский 45 мг
Сыр Российский 35 мг
Сгущенка 34 мг
Яйцо перепелиное 32 мг
Сыр Рокфор 30 мг
Творог, 18% жирности 23 мг
Сыр, моцарелла 20 мг
Яйцо утиное 17 мг
Яйцо гусиное 16 мг
Простокваша 16 мг
Желток, куриный 15 мг
Ацидофилин 15 мг
Молоко, козье 14 мг
Кефир 14 мг
Молоко, коровье 14 мг
Индюшачье 13 мг
Яйцо куриное, отварное 12 мг
Яйцо куриное 12 мг
Йогурт 12 мг
Молоко, овечье 11 мг
Белок, куриный 9 мг
Молоко, кобылье 9 мг
Сливки, пастеризованные, 20% 8 мг
Сметана, 30% 7 мг

Бобовые

Соя 266 мг
Фасоль желтая 222 мг
Фасоль белая 190 мг
Фасоль, черная 171 мг
Горох, зерно 107 мг
Фасоль, зерно 103 мг
Чечевица, зерно 80 мг
Фасоль белая, вареная 63 мг
Горошек зеленый, консервированный 21 мг
Чечевица 12 мг

Крупы

Пшеничные отруби 611 мг
Овсяные отруби 235 мг
Гречиха 231 мг
Овес 135 мг
Ячмень, лущеный 133 мг
Рожь 120 мг
Рис 116 мг
Пшеница 114 мг
Пшено шлифованное 83 мг
Рисовая крупа 50 мг
Коричневый рис, приготовленный 43 мг
Перловая крупа 40 мг
Овсяные отруби, приготовленные 40 мг
Кукурузная крупа 30 мг
Перловая крупа, приготовленная 22 мг
Манная крупа 18 мг
Белый рис, приготовленный 12 мг

Орехи

Кунжут 540 мг
Бразильский орех 376 мг
Семечки подсолнечника 317 мг
Кешью 270 мг
Кедровые 251 мг
Миндаль 234 мг
Грецкий орех 198 мг
Арахис 182 мг
Фундук 172 мг
Фисташки 121 мг
Пекан 121 мг

Овощи

Брюссельская капуста 40 мг
Салат 40 мг
Чеснок 30 мг
Картофель 23 мг
Свекла 22 мг
Томаты 20 мг
Лук зеленый 18 мг
Капуста белокочанная 16 мг
Лук репчатый 14 мг
Огурцы 14 мг
Редис 13 мг
Морковь 10 мг
Баклажаны 9 мг
Перец сладкий 7 мг

Фрукты и ягоды

Черная смородина 31 мг
Джекфрут 29 мг
Авокадо 28 мг
Банан 27 мг
Вишня 26 мг
Малина 22 мг
Земляника 18 мг
Виноград 17 мг
Инжир 17 мг
Киви 17 мг
Персик 16 мг
Апельсин 13 мг
Клубника 13 мг
Дыня 13 мг
Груша 12 мг
Мандарин 12 мг
Лимон 12 мг
Ананас 11 мг
Арбуз 10 мг
Лонган 10 мг
Манго 10 мг
Грейпфрут 9 мг
Крыжовник 9 мг
Слива 9 мг
Яблоки 9 мг
Абрикосы 8 мг
Клюква 6 мг

ivitaminy.ru

Магний в природе (1,9% в Земной коре)

МагнийМагний и его соединения достаточно давно известны людям. Впервые соли магния были получены еще в 1695 году английским врачом. Врач проводил анализ воды из ближайшего источника. При выпаривании жидкости получилась соль с горьковатым привкусом. Аптекари и врачи считали, что полученная в результате реакции соль можно применять в лечебных целях. Соль стали называть белой магнезией.

Однако, относительно чистый магний был получен намного позже. Химик Дэви получил металл (как и другие активные металлы) в результате процесса электролиза. Однако, магний, полученный Г. Дэви в результате реакции, еще нельзя было назвать чистым. Чистый магний был получен Бюсси несколько позже – в 1828 году.

Характеристика магния

Физические свойства

Физические свойства магния

Магний имеет белый цвет, а также обладает характерным блеском. Магний достаточно мягок, имеет хорошую пластичность и ковкость. Элемент имеет относительно небольшую температуру плавления – около 650° С. На открытом воздухе магний тускнеет. Это происходит потому, что на поверхности куска металла образуется оксидная пленка. Магний хорошо горит ярким белым пламенем.

Химические свойства

Химические свойства магния

Магний является активным элементом. Как правило, этим и объясняются химические свойства элемента.

  • Магний отлично горит. Однако, в обычных ситуациях металл защищён специальной оксидной пленкой, которая предохраняет магний от реакции с кислородом. При нагревании оксидная пленка исчезает и происходит реакция магния с кислородом. В результате горения в кислороде образуется оксид магния. Интересным фактом является то, что свет, выделяемый элементом при горении, очень похож на солнечный. Эта особенность была замечена еще первыми фотографами. Именно поэтому магниевый порошок с некоторыми примесями использовался как вспышка для освещения фотографируемого объекта.
  • Также при нагревании магний вступает в реакцию с водородом, а также с серой.
  • С галогенами магний реагирует при комнатной температуре.
  • Магний не вступает в реакцию со щелочами.

Нахождение магния в природе

Нахождение магния в природе

Магний – достаточно распространенный на Земле элемент. Его можно встретить достаточно часто.

  • Во-первых, магний входит в состав коры Земли. Концентрация магния в Земной коре находится на уровне 1,9%.
  • Во-вторых, большое количество производных магния входит в состав кристаллических горных пород. Как правило, магний здесь встречается в виде карбонатов, сульфатов и силикатов.
  • Также достаточно большое количество магния содержится в морских и океанических водах. В одном кубическом метре соленой океанической воды содержится примерно 4 кг магния. По своему содержанию в морской воде магний уступает лишь натрию. Стоит сказать, что магний есть не только в соленой морской воде, но и в пресной.
  • Магний всегда входит в состав растений.

Области применения магния

области применения магния

Магний и его соединения широко применяются в промышленности.

  • Чаще всего магний и его сплавы используются в качестве легкого конструкционного металла. Дело в том, что сплавы этого металла мало весят (масса сплавов магния примерно в четыре раза меньше массы стали), при этом достаточно прочны и долговечны. Такие сплавы можно использовать и для автомобильных деталей, и для шасси самолетов, и для лестниц, грузовых платформ и других конструкций.
  • Также магний используется в металлургии. Некоторое количество магния добавляют, например, в алюминий. Это повышает устойчивость сплава к коррозии.
  • Смесь магния с различными окислителями широко применяется в пиротехнике, для приготовления различных зажигательных и осветительных составов.

xn—-8sbiecm6bhdx8i.xn--p1ai

В каких продуктах питания содержится магний: список и таблица

Аватар автора Ирина Камшилина

Ирина Камшилина

Готовить для кого-то гораздо приятней, чем для себя))

Магний относится к тем веществам, без которых деятельность организма невозможна: регулярное его поступление обеспечивает нормальную деятельность многих систем и органов. Доказано, что магниевый дефицит замедляет и ухудшает многие важные процессы в организме. Магний, влияющий на синтез белков, принимает участие в 360-ти важнейших обменных процессах. В чем состоит его польза, какова ежедневная норма потребления этого вещества?

Чем полезен магнийЧем полезен магний

Статьи по теме

В чем заключается польза магния?

Магниевый дефицит сказывается на работе сердца, почек, эндокринной системы, мозга. Тормозятся обменные процессы, ухудшается усвоение витаминов. Как результат – портится самочувствие, снижается работоспособность. Особенно страдает нервная система, снижается устойчивость к стрессам. Магний полезен для следующих органов и систем организма:

  1. Мышц, суставов. Магниевый дефицит способен вызвать мышечные судороги. Нехватка магния особенно опасна при переизбытке кальция: в желчном пузыре и почках начинают накапливаться камни.
  2. Сердца. Согласно исследованиям ученых, у 80% людей, страдающих болезнями сердца и сосудов, наблюдался магниевый дефицит. При восполнении запасов этого вещества работа сердца улучшается, устраняется аритмия – сердце работает ритмичнее и стабильнее.
  3. Сосудов. Сосуды головного мозга содержат магния вдвое больше, чем сосуды других частей тела. Нехватка этого микроэлемента имеет негативные последствия для сосудов головного мозга: в них начинают образовываться тромбы, что чревато риском развития инсульта. По некоторым сведениям, магниевый дефицит – причина головных болей, мигреней, повышенного давления.
  4. Нервной системы. Нехватка магния – причина неправильной работы нервных клеток. В результате нервные клетки постоянно находятся в тонусе, и не переходят в режим релаксации.
  5. Поджелудочной железы. Магний улучшает работу поджелудочной железы, в результате уровень сахара в крови резко уменьшается.

Необходимая норма магния для человекаНеобходимая норма магния для человека

Какая норма магния для человека

Подсчитано, что тело человека содержит около 20 грамм магния. Организм насыщается данным микроэлементом не только из пищевых продуктов, но и из воды. Каждые сутки организм человека потребляет 380-450 миллиграмм этого вещества. Серьезные физические и психологические нагрузки повышают потребление магния, если же человек злоупотребляет алкоголем, потребность еще увеличивается.

Какие продукты содержат больше всего магнияКакие продукты содержат больше всего магния

В каких продуктах содержится больше всего магния?

Хронический магниевый дефицит – явление нередкое. Причины этого – неправильное, нерациональное питание, стрессы, алкоголь, плохая экология. Для устранения дефицита диетологи рекомендуют потреблять больше продуктов, богатых магнием. Это преимущественно продукты растительного происхождения, хотя животные — также содержат немало данного полезного вещества. Вот в каких продуктах питания содержится магний в максимальных количествах:

  1. пшеница (отруби)
  2. пшеничные зерна (проросшие)
  3. какао
  4. соевые бобы
  5. кешью
  6. арахис
  7. нешлифованный рис
  8. миндаль
  9. хлопья овсяные
  10. фасоль белая

Растительные продукты с высоким содержанием магнияРастительные продукты с высоким содержанием магния

Продукты растительного происхождения

Магний содержит большинство продуктов растительного происхождения, но есть такие, где его особенно много. Максимальное количество этого микроэлемента находится в орехах, крупах и бобовых, немного меньше – в овощах, сухофруктах, зелени. Такое разнообразие продуктов, богатых магнием, позволяет пополнять его запасы независимо от времени года.

Орехи

  • кунжут
  • кедровые орешки
  • кешью
  • миндаль
  • арахис
  • грецкие орехи
  • подсолнечник (семена)
  • фундук
  • фисташки

Крупы, бобовые

  • гречка
  • овсянка
  • пшенка
  • фасоль
  • горошек зеленый
  • чечевица
  • фасоль

Зелень, овощи

  • шпинат
  • петрушка
  • руккола
  • укроп
  • чеснок
  • морковь

Фрукты, сухофрукты

  • финики
  • чернослив
  • хурма
  • банан
  • изюм

Животные продукты с высоким содержанием магнияЖивотные продукты с высоким содержанием магния

Список продуктов животного происхождения

Составляйте свой рацион так, чтобы каждый день питаться продуктами как растительного, так и животного происхождения. Важно не забывать о потреблении животных продуктов: некоторые полезные вещества содержатся только в них. Для сохранения максимального количества магния при обработке блюд диетологи рекомендуют варить, а не жарить яйца, мясо и рыбу. Много магния содержат:

  • яйца
  • твердые сыры
  • свинина
  • говядина
  • рыба морская
  • молоко

Таблица продуктов питания, содержащих магний














































Продукты

Содержание магния

(мг на 100 гр.)

Отруби пшеничные

586

Какао

420

Пшеничные зерна (проросшие)

320

Кунжут

320

Кешью

270

Бобы соевые

260

Крупа гречневая

260

Орехи кедровые

230

Миндаль

230

Фисташки

200

Арахис

180

Фундук

170

Рис нешлифованный длинный

160

Хлопья овсяные

140

Крупа ячневая

138

Крупа овсяная

137

Крупа пшенная

132

Фасоль

130

Зеленый горох (свежий)

105

Хлеб белый с отрубями

92

Петрушка

85

Финики

85

Чечевица

80

Шпинат

79

Укроп

70

Хлеб ржаной с отрубями

70

Рис шлифованный

64

Сыр твердый

40-60

Хурма

56

Фенхель

49

Яйца

47

Руккола

47

Чернослив

44

Кукуруза свежая

43

Морковь

38

Куриное мясо

37

Изюм

31

Сельдь

31

Чеснок

30

Банан

27

Свинина

27

Говядина

27

Брокколи

24

Молоко

12

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Рассказать друзьям:

Комментарии для сайта Cackle

sovets.net

магний — это… Что такое магний?

МА́ГНИЙ -я; м. [лат. magnium] Химический элемент (Mg), лёгкий ковкий металл серебристо-белого цвета, горящий ярким белым пламенем. Окись магния. Вспышка магния.

Ма́гниевый, -ая, -ое. М-ые руды. М. сплав.

МА́ГНИЙ (лат. Magnesium), Mg (читается «магний»), химический элемент IIА группы третьего периода периодической системы Менделеева (см. ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ МЕНДЕЛЕЕВА), атомный номер 12, атомная масса 24,305. Природный магний состоит из трех стабильных нуклидов (см. НУКЛИД): 24Mg (78,60% по массе), 25Mg (10,11%) и 26Mg (11,29%). Электронная конфигурация нейтрального атома 1s22s2p63s2, согласно которой магний в стабильных соединениях двухвалентен (степень окисления +2).

Простое вещество магний — легкий, серебристо-белый блестящий металл.

История открытия
Соединения магния были известны человеку с давних пор. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита (см. МАГНЕЗИТ). Металлический магний впервые получил в 1808 английский химик Г. Дэви (см. ДЭВИ Гемфри). Как и в случае других активных металлов — натрия, калия, кальция, для получения металлического магния Дэви использовал электролиз. Электролизу он подвергал увлажненную смесь белой магнезии (в ее состав, судя по всему, входили оксид магния MgO и гидроксид магния Mg(OH)2) и оксида ртути HgO. В результате Дэви получил амальгаму — сплав нового металла со ртутью. После отгонки ртути остался порошок нового металла, который Дэви назвал магнием.

Магний, полученный Дэви, был довольно грязным, чистый металлический магний получен впервые в 1828 французским химиком А. Бюсси.

Нахождение в природе
Магний — один из десяти наиболее распространенных элементов земной коры. В ней содержится 2,35% магния по массе. Из-за высокой химической активности в свободном виде магний не встречается, а входит в состав множества минералов — силикатов, алюмосиликатов, карбонатов, хлоридов, сульфатов и др. Так, магний содержат широко распространенные силикаты оливин (см. ОЛИВИН) (Mg,Fe)2[SiO4] и серпентин (см. СЕРПЕНТИН) Mg6(OH)8[Si4O10]. Важное практическое значение имеют такие магнийсодержащие минералы, как асбест (см. АСБЕСТ (минерал)), магнезит (см. МАГНЕЗИТ), доломит (см. ДОЛОМИТ) MgCO3·CaCO3, бишофит (см. БИШОФИТ) MgCl2·6H2O, карналлит (см. КАРНАЛЛИТ) KCl·MgCl2·6H2O, эпсомит (см. ЭПСОМИТ) MgSO4·7H2O, каинит (см. КАИНИТ) KCl·MgSO4·3H2O, астраханит Na2SO4·MgSO4·4H2O и др. Магний содержится в морской воде (4% Mg в сухом остатке), в природных рассолах, во многих подземных водах.

Получение
Обычный промышленный метод получения металлического магния — это электролиз расплава смеси безводных хлоридов магния MgCl2, натрия NaCl и калия KCl. В этом расплаве электрохимическому восстановлению подвергается хлорид магния:

MgCl2 (электролиз) = Mg + Cl2.

Расплавленный металл периодически отбирают из электролизной ванны, а в нее добавляют новые порции магнийсодержащего сырья. Так как полученный таким способом магний содержит сравнительно много — около 0,1% примесей, при необходимости «сырой» магний подвергают дополнительной очистке. С этой целью используют электролитическое рафинирование, переплавку в вакууме с использованием специальных добавок — флюсов, которые «отнимают» примеси от магния, или перегонку (сублимацию) металла в вакууме. Чистота рафинированного магния достигает 99,999% и выше.

Разработан и другой способ получения магния — термический. В этом случае для восстановления оксида магния при высокой температуре используют кокс:

MgO + C = Mg + CO

или кремний. Применение кремния позволяет получать магний из такого сырья, как доломит CaCO3·MgCO3, не проводя предварительного разделения магния и кальция. С участием доломита протекают реакции:

CaCO3·MgCO3 = CaO + MgO + 2CO2,

2MgO + 2CaO + Si = Ca2SiO4 + 2Mg.

Преимущество термического способа состоит в том, что он позволяет получать магний более высокой чистоты. Для получения магния используют не только минеральное сырье, но и морскую воду.

Физические и химические свойства
Металлический магний обладает гексагональной кристаллической решеткой. Температура плавления 650°C, температура кипения 1105°C, плотность 1,74 г/см3 (магний — очень легкий металл, легче только кальций и щелочные металлы (см. ЩЕЛОЧНЫЕ МЕТАЛЛЫ)). Стандартный электродный потенциал магния Mg/Mg2+ –2,37В. В ряду стандартных потенциалов он расположен за натрием перед алюминием.

Поверхность магния покрыта плотной пленкой оксида MgO, при обычных условиях надежно защищающей металл от дальнейшего разрушения. Только при нагревании металла до температуры выше примерно 600°C он загорается на воздухе. Горит магний с испусканием яркого света, по спектральному составу близкого к солнечному. Поэтому раньше фотографы при недостаточной освещенности проводили съемку в свете горящей ленты магния. При горении магния на воздухе образуется рыхлый белый порошок оксида магния MgO:

2Mg + O2 = 2MgO.

Одновременно с оксидом образуется и нитрид магния Mg3N2:

3Mg + N2 = Mg3N2.

C холодной водой магний не реагирует (или, точнее, реагирует, но крайне медленно), а с горячей водой он вступает во взаимодействие, причем образуется рыхлый белый осадок гидроксида магния Mg(OH)2:

Mg + 2H2O = Mg(OH)2 + H2.

Если ленту магния поджечь и опустить в стакан с водой, то горение металла продолжается. При этом выделяющийся при взаимодействии магния с водой водород немедленно загорается на воздухе. Горение магния продолжается и в атмосфере углекислого газа:

2Mg + CO2 = 2MgO + C.

Способность магния гореть как в воде, так и в атмосфере углекислого газа существенно усложняет тушение пожаров, при которых горят конструкции из магния или его сплавов. (см. МАГНИЯ ОКСИД)

Оксид магния (см. МАГНИЯ ОКСИД) MgO представляет собой белый рыхлый порошок, не реагирующий с водой. Раньше его называли жженой магнезией или просто магнезией. Этот оксид обладает основными свойствами, он реагирует с различными кислотами, например:

MgO + 2HNO3 = Mg(NO3)2 + H2O.

Отвечающее этому оксиду основание Mg(OH)2 — средней силы, но в воде практически нерастворимо. Его можно получить, например, добавляя щелочь к раствору какой-либо соли магния:

2NaOH + MgSO4 = Mg(OH)2 + Na2SO4.

Так как оксид магния MgO при взаимодействии с водой щелочей не образует, а основание магния Mg(OH)2 щелочными свойствами не обладает, магний, в отличие от своих «согруппников» — кальция, стронция и бария, не относится к числу щелочноземельных металлов.

Металлический магний при комнатной температуре реагирует с галогенами, например, с бромом:

Mg + Br2 = MgBr2.

При нагревании магний вступает во взаимодействие с серой, давая сульфид магния:

Mg + S = MgS.

Если в инертной атмосфере прокаливать смесь магния и кокса, то образуется карбид магния состава Mg2C3 (следует отметить, что ближайший сосед магния по группе — кальций — в аналогичных условиях образует карбид состава СаС2). При разложении карбида магния водой образуется гомолог ацетилена — пропин С3Н4:

Mg2C3 + 4Н2О = 2Mg(OH)2 + С3Н4.

Поэтому Mg2C3 можно назвать пропиленидом магния.

В поведении магния есть черты сходства с поведением щелочного металла лития (см. ЛИТИЙ) (пример диагонального сходства элементов в таблице Менделеева). Так, магний, как и литий, реагирует с азотом (реакция магния с азотом протекает при нагревании), в результате образуется нитрид магния:

3Mg + N2= Mg3N2.

Как и нитрид лития, нитрид магния легко разлагается водой:

Mg3N2 + 6Н2О = 3Mg(ОН)2 + 2NН3.

Сходство с литием проявляется у магния и в том, что его карбонат MgCO3 и фосфат Mg3(PO4)2 в воде плохо растворимы, как и соответствующие соли лития.

С кальцием магний сближает то, что присутствие в воде растворимых гидрокарбонатов этих элементов обусловливает жесткость воды (см. ЖЕСТКОСТЬ ВОДЫ). Как и в случае гидрокарбоната кальция (см. ст. Кальций (см. КАЛЬЦИЙ)), жесткость, вызванная гидрокарбонатом магния Mg(HCO3)2, — временная. При кипячении гидрокарбонат магния Mg(HCO3)2 разлагается и в осадок выпадает его основной карбонат — гидроксокарбонат магния (MgOH)2CO3:

2Mg(HCO3)2 = (MgOH)2CO3 + 3CO2 + Н2О.

Практическое применение до сих пор имеет перхлорат магния Mg(ClO4)2, энергично взаимодействующий с парами воды, хорошо осушающий воздух или другой газ, проходящий через его слой. При этом образуется прочный кристаллогидрат Mg(ClO4)2·6Н2О. Это вещество можно вновь обезводить, нагревая в вакууме при температуре около 300°C. За свойства осушителя перхлорат магния получил название «ангидрон».

Большое значение в органической химии имеют магнийорганические соединения (см. МАГНИЙОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ), содержащие связь Mg—C. Особенно важную роль среди них играет так называемый реактив Гриньяра — соединения магния общей формулы RMgHal, где R — органический радикал, а Hal = Cl, Br или I. Эти соединения образуются в эфирных растворах при взаимодействии магния и соответствующего органического галоида RHal и используются для самых разнообразных синтезов.

Применение
Основная часть добываемого магния используется для получения различных легких магниевых сплавов. В состав этих сплавов, кроме магния, входят, как правило, алюминий, цинк, цирконий. Такие сплавы достаточно прочны и находят применение в самолетостроении, приборостроении и для других целей.

Высокая химическая активность металлического магния позволяет использовать его при магниетермическом получении таких металлов, как титан, цирконий, ванадий, уран и др. При этом магний реагирует с оксидом или фторидом получаемого металла, например:

2Mg + TiO2 = 2MgO + Ti.

2Mg + UF4 = 2MgF2 + U.

Широкое применение находят многие соединения магния, особенно его оксид, карбонат и сульфат.

Биологическая роль магния
Магний — биогенный элемент (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ), постоянно присутствующий в тканях всех организмов. Он входит в состав молекулы зеленого пигмента растений — хлорофилла (см. ХЛОРОФИЛЛ), участвует в минеральном обмене, активирует ферментные процессы в организме, повышает засухоустойчивость растений. С участием ионов Mg+осуществляется биолюминесценция (см. БИОЛЮМИНЕСЦЕНЦИЯ) и ряд других биологических процессов. Широкое практическое применение находят магниевые удобрения — доломитовая мука, жженая магнезия и др.

В организм животных и человека магний поступает с пищей. Суточная потребность человека в магнии — 0,3—0,5 г. В организме среднего человека (масса тела 70 кг) содержится около 19 г магния. Нарушения обмена магния приводят к различным заболеваниям. В медицине применяют препараты магния — его сульфат, карбонат, жженую магнезию.

dic.academic.ru

Магний — Мегаэнциклопедия Кирилла и Мефодия — статья

Соединения магния были известны человеку с давних пор. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита. Металлический магний впервые получил в 1808 английский химик Г. Дэви. Как и в случае других активных металлов — натрия, калия, кальция, для получения металлического магния Дэви использовал электролиз. Электролизу он подвергал увлажненную смесь белой магнезии (в ее состав, судя по всему, входили оксид магния MgO и гидроксид магния Mg(OH)2) и оксида ртути HgO. В результате Дэви получил амальгаму — сплав нового металла со ртутью. После отгонки ртути остался порошок нового металла, который Дэви назвал магнием.

Магний, полученный Дэви, был довольно грязным, чистый металлический магний получен впервые в 1828 французским химиком А. Бюсси.

Магний — один из десяти наиболее распространенных элементов земной коры. В ней содержится 2, 35% магния по массе. Из-за высокой химической активности в свободном виде магний не встречается, а входит в состав множества минералов — силикатов, алюмосиликатов, карбонатов, хлоридов, сульфатов и др. Так, магний содержат широко распространенные силикаты оливин (Mg, Fe)2[SiO4] и серпентин Mg6(OH)8[Si4O10]. Важное практическое значение имеют такие магнийсодержащие минералы, как асбест, магнезит, доломит MgCO3·CaCO3, бишофит MgCl2·6H2O, карналлит KCl·MgCl2·6H2O, эпсомит MgSO4·7H2O, каинит KCl·MgSO4·3H2O, астраханит Na2SO4·MgSO4·4H2O и др. Магний содержится в морской воде (4% Mg в сухом остатке), в природных рассолах, во многих подземных водах.

Обычный промышленный метод получения металлического магния — это электролиз расплава смеси безводных хлоридов магния MgCl2, натрия NaCl и калия KCl. В этом расплаве электрохимическому восстановлению подвергается хлорид магния:

MgCl2 (электролиз) = Mg + Cl2.

Расплавленный металл периодически отбирают из электролизной ванны, а в нее добавляют новые порции магнийсодержащего сырья. Так как полученный таким способом магний содержит сравнительно много — около 0, 1% примесей, при необходимости «сырой» магний подвергают дополнительной очистке. С этой целью используют электролитическое рафинирование, переплавку в вакууме с использованием специальных добавок — флюсов, которые «отнимают» примеси от магния, или перегонку (сублимацию) металла в вакууме. Чистота рафинированного магния достигает 99, 999% и выше.

Разработан и другой способ получения магния — термический. В этом случае для восстановления оксида магния при высокой температуре используют кокс:

MgO + C = Mg + CO

или кремний. Применение кремния позволяет получать магний из такого сырья, как доломит CaCO3·MgCO3, не проводя предварительного разделения магния и кальция. С участием доломита протекают реакции:

CaCO3·MgCO3 = CaO + MgO + 2CO2,

2MgO + 2CaO + Si = Ca2SiO4 + 2Mg.

Преимущество термического способа состоит в том, что он позволяет получать магний более высокой чистоты. Для получения магния используют не только минеральное сырье, но и морскую воду.

Металлический магний обладает гексагональной кристаллической решеткой. Температура плавления 650°C, температура кипения 1105°C, плотность 1, 74 г/см3 (магний — очень легкий металл, легче только кальций и щелочные металлы). Стандартный электродный потенциал магния Mg/Mg2+ –2, 37В. В ряду стандартных потенциалов он расположен за натрием перед алюминием.

Поверхность магния покрыта плотной пленкой оксида MgO, при обычных условиях надежно защищающей металл от дальнейшего разрушения. Только при нагревании металла до температуры выше примерно 600°C он загорается на воздухе. Горит магний с испусканием яркого света, по спектральному составу близкого к солнечному. Поэтому раньше фотографы при недостаточной освещенности проводили съемку в свете горящей ленты магния. При горении магния на воздухе образуется рыхлый белый порошок оксида магния MgO:

2Mg + O2 = 2MgO.

Одновременно с оксидом образуется и нитрид магния Mg3N2:

3Mg + N2 = Mg3N2.

C холодной водой магний не реагирует (или, точнее, реагирует, но крайне медленно), а с горячей водой он вступает во взаимодействие, причем образуется рыхлый белый осадок гидроксида магния Mg(OH)2:

Mg + 2H2O = Mg(OH)2 + H2.

Если ленту магния поджечь и опустить в стакан с водой, то горение металла продолжается. При этом выделяющийся при взаимодействии магния с водой водород немедленно загорается на воздухе. Горение магния продолжается и в атмосфере углекислого газа:

2Mg + CO2 = 2MgO + C.

Способность магния гореть как в воде, так и в атмосфере углекислого газа существенно усложняет тушение пожаров, при которых горят конструкции из магния или его сплавов.

Оксид магния MgO представляет собой белый рыхлый порошок, не реагирующий с водой. Раньше его называли жженой магнезией или просто магнезией. Этот оксид обладает основными свойствами, он реагирует с различными кислотами, например:

MgO + 2HNO3 = Mg(NO3)2 + H2O.

Отвечающее этому оксиду основание Mg(OH)2 — средней силы, но в воде практически нерастворимо. Его можно получить, например, добавляя щелочь к раствору какой-либо соли магния:

2NaOH + MgSO4 = Mg(OH)2 + Na2SO4.

Так как оксид магния MgO при взаимодействии с водой щелочей не образует, а основание магния Mg(OH)2 щелочными свойствами не обладает, магний, в отличие от своих «согруппников» — кальция, стронция и бария, не относится к числу щелочноземельных металлов.

Металлический магний при комнатной температуре реагирует с галогенами, например, с бромом:

Mg + Br2 = MgBr2.

При нагревании магний вступает во взаимодействие с серой, давая сульфид магния:

Mg + S = MgS.

Если в инертной атмосфере прокаливать смесь магния и кокса, то образуется карбид магния состава Mg2C3 (следует отметить, что ближайший сосед магния по группе — кальций — в аналогичных условиях образует карбид состава СаС2). При разложении карбида магния водой образуется гомолог ацетилена — пропин С3Н4:

Mg2C3 + 4Н2О = 2Mg(OH)2 + С3Н4.

Поэтому Mg2C3 можно назвать пропиленидом магния.

В поведении магния есть черты сходства с поведением щелочного металла лития (пример диагонального сходства элементов в таблице Менделеева). Так, магний, как и литий, реагирует с азотом (реакция магния с азотом протекает при нагревании), в результате образуется нитрид магния:

3Mg + N2= Mg3N2.

Как и нитрид лития, нитрид магния легко разлагается водой:

Mg3N2 + 6Н2О = 3Mg(ОН)2 + 2NН3.

Сходство с литием проявляется у магния и в том, что его карбонат MgCO3 и фосфат Mg3(PO4)2 в воде плохо растворимы, как и соответствующие соли лития.

С кальцием магний сближает то, что присутствие в воде растворимых гидрокарбонатов этих элементов обусловливает жесткость воды. Как и в случае гидрокарбоната кальция (см. ст. Кальций), жесткость, вызванная гидрокарбонатом магния Mg(HCO3)2, — временная. При кипячении гидрокарбонат магния Mg(HCO3)2 разлагается и в осадок выпадает его основной карбонат — гидроксокарбонат магния (MgOH)2CO3:

2Mg(HCO3)2 = (MgOH)2CO3 + 3CO2 + Н2О.

Практическое применение до сих пор имеет перхлорат магния Mg(ClO4)2, энергично взаимодействующий с парами воды, хорошо осушающий воздух или другой газ, проходящий через его слой. При этом образуется прочный кристаллогидрат Mg(ClO4)2·6Н2О. Это вещество можно вновь обезводить, нагревая в вакууме при температуре около 300°C. За свойства осушителя перхлорат магния получил название «ангидрон».

Большое значение в органической химии имеют магнийорганические соединения, содержащие связь Mg—C. Особенно важную роль среди них играет так называемый реактив Гриньяра — соединения магния общей формулы RMgHal, где R — органический радикал, а Hal = Cl, Br или I. Эти соединения образуются в эфирных растворах при взаимодействии магния и соответствующего органического галоида RHal и используются для самых разнообразных синтезов.

Основная часть добываемого магния используется для получения различных легких магниевых сплавов. В состав этих сплавов, кроме магния, входят, как правило, алюминий, цинк, цирконий. Такие сплавы достаточно прочны и находят применение в самолетостроении, приборостроении и для других целей.

Высокая химическая активность металлического магния позволяет использовать его при магниетермическом получении таких металлов, как титан, цирконий, ванадий, уран и др. При этом магний реагирует с оксидом или фторидом получаемого металла, например:

2Mg + TiO2 = 2MgO + Ti.

2Mg + UF4 = 2MgF2 + U.

Широкое применение находят многие соединения магния, особенно его оксид, карбонат и сульфат.

Магний — биогенный элемент, постоянно присутствующий в тканях всех организмов. Он входит в состав молекулы зеленого пигмента растений — хлорофилла, участвует в минеральном обмене, активирует ферментные процессы в организме, повышает засухоустойчивость растений. С участием ионов Mg+осуществляется биолюминесценция и ряд других биологических процессов. Широкое практическое применение находят магниевые удобрения — доломитовая мука, жженая магнезия и др.

В организм животных и человека магний поступает с пищей. Суточная потребность человека в магнии — 0, 3-0, 5 г. В организме среднего человека (масса тела 70 кг) содержится около 19 г магния. Нарушения обмена магния приводят к различным заболеваниям. В медицине применяют препараты магния — его сульфат, карбонат, жженую магнезию.

  • Тихонов В. Н. Аналитическая химия магния. М.: Наука, 1973.
  • Иванов А. И. и др. Производство магния. М., 1979.

megabook.ru

Магний — Википедия

Внешний вид простого вещества
Лёгкий, ковкий, серебристо-белый металл
Свойства атома
Название, символ, номер Магний / Magnesium (Mg), 12
Атомная масса
(молярная масса)
[24,304; 24,307][комм 1][1] а. е. м. (г/моль)
Электронная конфигурация [Ne] 3s2
Радиус атома 160 пм
Химические свойства
Ковалентный радиус 136 пм
Радиус иона 66 (+2e) пм
Электроотрицательность 1,31 (шкала Полинга)
Электродный потенциал −2,37 В
Степени окисления 0; +2
Энергия ионизации
(первый электрон)
 737,3 (7,64) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 1,738[2] г/см³
Температура плавления 650 °C (923 K)[2]
Температура кипения 1090 °C (1363 K)[2]
Уд. теплота плавления 9,20 кДж/моль
Уд. теплота испарения 131,8 кДж/моль
Молярная теплоёмкость 24,90[3] Дж/(K·моль)
Молярный объём 14,0 см³/моль
Кристаллическая решётка простого вещества
Структура решётки гексагональная
Параметры решётки a=0,32029 нм, c=0,52000 нм
Отношение c/a 1,624
Температура Дебая 318 K
Прочие характеристики
Теплопроводность (300 K) 156 Вт/(м·К)
Номер CAS 7439-95-4
Эмиссионный спектр

Металлический магний

Ма́гний — элемент второй группы (по старой классификации — главной подгруппы второй группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 12. Обозначается символом Mg (лат. Magnesium). Простое вещество магний — лёгкий, ковкий металл серебристо-белого цвета.

История открытия

В 1695 году из минеральной воды Эпсомского источника в Англии выделили соль, обладавшую горьким вкусом и слабительным действием. Аптекари назвали её «горькой солью», а также «английской» или «эпсомской солью». Минерал эпсомит представляет собой кристаллогидрат сульфата магния и имеет химическую формулу MgSO4 · 7H2O. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита.

В 1792 году Антон фон Рупрехт выделил из белой магнезии восстановлением углём неизвестный металл, названный им австрием. Позже было установлено, что «австрий» представляет собой магний крайне низкой степени чистоты, поскольку исходное вещество было сильно загрязнено железом[4].

В 1808 г. английский химик Гемфри Дэви с помощью электролиза увлажнённой смеси магнезии и оксида ртути получил амальгаму неизвестного металла, которому дал название «магнезиум», сохранившееся до сих пор во многих странах. В России с 1831 года принято название «магний». В 1829 г. французский химик А. Бюсси получил магний, восстанавливая его расплавленный хлорид металлическим калием. В 1830 г. М. Фарадей получил магний электролизом расплавленного хлорида магния.

Изотопы

Природный магний состоит из смеси 3 стабильных изотопов 24Mg, 25Mg и 26Mg с молярной концентрацией в смеси 78,6 %, 10,1 % и 11,3 % соответственно.

Все остальные 19 изотопов нестабильны, самый долгоживущий из них 28Mg с периодом полураспада 20,915 часов.

Нахождение в природе

Кларк магния — 1,95 % (19,5 кг/т). Это один из самых распространённых элементов земной коры. Большие количества магния находятся в морской воде в виде раствора солей. Основные минералы с высоким массовым содержание магния:

  • морская вода — (0,12—0,13 %),
  • карналлит — MgCl2 • KCl • 6H2O (8,7 %),
  • бишофит — MgCl2 • 6H2O (11,9 %),
  • кизерит — MgSO4 • H2O (17,6 %),
  • эпсомит — MgSO4 • 7H2O (9,9 %),
  • каинит — KCl • MgSO4 • 3H2O (9,8 %),
  • магнезит — MgCO3 (28,7 %),
  • доломит — CaCO3·MgCO3 (13,1 %),
  • брусит — Mg(OH)2 (41,6 %).

Магнезиальные соли встречаются в больших количествах в солевых отложениях самосадочных озёр. Месторождения карналлита осадочного происхождения имеются во многих странах.

Магнезит образуется преимущественно в гидротермальных условиях и относящихся к среднетемпературным гидротермальным месторождениям. Доломит также является важным магниевым сырьём. Месторождения доломита широко распространены, запасы их огромны. Они генетически связаны с карбонатными осадочными слоями и большинство из них имеет докембрийский или пермский геологический возраст. Доломитовые залежи образуются осадочным путём, но могут возникать также при воздействии на известняки гидротермальных растворов, подземных или поверхностных вод.

Чрезвычайно редким минералом является самородный магний, образующийся в потоках восстановительных газов и впервые обнаруженный в 1991 году в береговых отложениях Чоны (Восточная Сибирь)[5][6], а затем в лавах в Южном Гиссаре (Таджикистан)[7].

Природные источники магния

Бо́льшая часть мирового производства магния сосредоточена в США (43 %), странах СНГ (26 %) и Норвегии (17 %), на рынке возрастает доля Китая[8].

Получение

Обычный промышленный метод получения металлического магния — это электролиз расплава смеси безводных хлоридов магния MgCl2 (бишофит), натрия NaCl и калия KCl. В расплаве электрохимическому восстановлению подвергается хлорид магния:

MgCl2→Mg+Cl2{\displaystyle {\mathsf {MgCl_{2}\rightarrow Mg+Cl_{2}}}}

Расплавленный металл периодически отбирают из электролизной ванны, а в неё добавляют новые порции магнийсодержащего сырья. Так как полученный таким способом магний содержит сравнительно много (около 0,1 %) примесей, при необходимости «сырой» магний подвергают дополнительной очистке. С этой целью используют электролитическое рафинирование, переплавку в вакууме с использованием специальных добавок — флюсов, которые удаляют примеси из магния или перегонку (сублимацию) металла в вакууме. Чистота рафинированного магния достигает 99,999 % и выше.

Разработан и другой способ получения магния — термический. В этом случае для восстановления оксида магния при высокой температуре используют кремний или кокс:

MgO+C→Mg+CO{\displaystyle {\mathsf {MgO+C\rightarrow Mg+CO}}}

Применение кремния позволяет получать магний из такого сырья, как доломит CaCO3·MgCO3, не проводя предварительного разделения магния и кальция. С участием доломита протекают реакции, вначале производят обжиг доломита:

CaCO3⋅MgCO3→CaO+MgO+2CO2{\displaystyle {\mathsf {CaCO_{3}\cdot MgCO_{3}\rightarrow CaO+MgO+2CO_{2}}}}

Затем сильный нагрев с кремнием:

2MgO+CaO+Si→CaSiO3+2Mg{\displaystyle {\mathsf {2MgO+CaO+Si\rightarrow CaSiO_{3}+2Mg}}}

Преимущество термического способа состоит в том, что он позволяет получать магний более высокой чистоты. Для получения магния используют не только минеральное сырьё, но и морскую воду.

Физические свойства

Магний — металл серебристо-белого цвета с гексагональной решёткой, обладает металлическим блеском; пространственная группа P 63/mmc, параметры решётки a = 0,32029 нм, c = 0,52000 нм, Z = 2. При обычных условиях поверхность магния покрыта довольно прочной защитной плёнкой оксида магния MgO, которая разрушается при нагреве на воздухе до примерно 600 °C, после чего металл сгорает с ослепительно белым пламенем с образованием оксида и нитрида магния Mg3N2. Скорость воспламенения магния намного выше скорости одёргивания руки, поэтому при поджоге магния человек не успевает одёрнуть руку и получает ожог. На горящий магний желательно смотреть только через темные очки или стекло, так как в противном случае есть риск получить световой ожог сетчатки и на время ослепнуть.

Плотность магния при 20 °C — 1,738 г/см³, температура плавления 650 °C, температура кипения 1090 °C[2], теплопроводность при 20 °C — 156 Вт/(м·К).

Магний высокой чистоты пластичен, хорошо прессуется, прокатывается и поддаётся обработке резанием.

Химические свойства

При нагревании на воздухе магний сгорает с образованием оксида и небольшого количества нитрида. При этом выделяется большое количество теплоты и света:

2Mg+O2→2MgO{\displaystyle {\mathsf {2Mg+O_{2}\rightarrow 2MgO}}}
3Mg+N2→Mg3N2{\displaystyle {\mathsf {3Mg+N_{2}\rightarrow Mg_{3}N_{2}}}}

Магний хорошо горит даже в углекислом газе:

2Mg+CO2→2MgO+C{\displaystyle {\mathsf {2Mg+CO_{2}\rightarrow 2MgO+C}}}

Раскаленный магний энергично реагирует с водой, вследствие чего горящий магний нельзя тушить водой:

Mg+h3O→MgO+h3+75 kcal{\displaystyle {\mathsf {Mg+H_{2}O\rightarrow MgO+H_{2}+75\ kcal}}}

Возможна также реакция:

Mg+2h3O→Mg(OH)2+h3↑+80,52 kcal{\displaystyle {\mathsf {Mg+2H_{2}O\rightarrow Mg(OH)_{2}+H_{2}\uparrow +80,52\ kcal}}}

Щелочи на магний не действуют, в кислотах он растворяется с бурным выделением водорода:

Mg+2HCl→MgCl2+h3↑{\displaystyle {\mathsf {Mg+2HCl\rightarrow MgCl_{2}+H_{2}\uparrow }}}

Смесь порошка магния со взрывом реагирует с сильными окислителями, например с сухим перманганатом калия.

Также следует упомянуть реактивы Гриньяра, то есть алкил- или арилмагнийгалогениды:

RHal+Mg→(C2H5)2ORMgX{\displaystyle {\mathsf {RHal+Mg{\xrightarrow[{}]{(C_{2}H_{5})_{2}O}}RMgX}}}

Где Hal = I , Br, реже Cl.

Металлический магний — сильный восстановитель, применяется в промышленности для восстановления титана до металла из тетрахлорида титана и металлического урана из его тетрафторида

TiCl4+2Mg→Ti+2MgCl2{\displaystyle {\mathsf {TiCl_{4}+2Mg\rightarrow Ti+2MgCl_{2}}}}
UF4+2Mg→U+2MgF2{\displaystyle {\mathsf {UF_{4}+2Mg\rightarrow U+2MgF_{2}}}}

Применение

Используется для получения лёгких и сверхлёгких литейных сплавов (самолётостроение, производство автомобилей), а также в пиротехнике и военном деле для изготовления осветительных и зажигательных ракет. Со второй половины XX века магний в чистом виде и в составе сплава кремния с железом — ферросиликомагния, стал широко применяться в чугунолитейном производстве благодаря открытию его свойства влиять на форму графита в чугуне, что позволило создать новые уникальные конструкционные материалы для машиностроения — высокопрочный чугун (чугун с шаровидным графитом — ЧШГ и чугун с вермикулярной формой графита -ЧВГ), сочетающие в себе свойства чугуна и стали.

Сплавы

Сплавы на основе магния являются важным конструкционным материалом в авиационной и автомобильной промышленности благодаря их лёгкости и прочности. Из магниевого сплава изготавливались картеры двигателей бензопилы «Дружба» и автомобиля «Запорожец», ряда других машин. Сейчас из этого сплава производятся легкосплавные колёсные диски.

Химические источники тока

Магний в виде чистого металла, а также его химические соединения (бромид, перхлорат) применяются для производства энергоёмких резервных электрических батарей (например, магний-перхлоратный элемент, серно-магниевый элемент, хлористосвинцово-магниевый элемент, хлорсеребряно-магниевый элемент, хлористомедно-магниевый элемент, магний-ванадиевый элемент и др.) и сухих элементов (марганцево-магниевый элемент, висмутисто-магниевый элемент, магний-м-ДНБ элемент и др.). Химические источники тока на основе магния отличаются очень высокими значениями удельных энергетических характеристик и высокой ЭДС.

Соединения

Гидрид магния — один из наиболее ёмких аккумуляторов водорода, применяемых для его компактного хранения и получения.

Огнеупорные материалы

Оксид магния MgO применяется в качестве огнеупорного материала для производства тиглей и специальной футеровки металлургических печей.

Перхлорат магния,
Mg(ClO4)2 — (ангидрон) применяется для глубокой осушки газов в лабораториях, и в качестве электролита для химических источников тока с применением магния.

Фторид магния MgF2 — в виде синтетических монокристаллов применяется в оптике (линзы, призмы).

Бромид магния MgBr2 — в качестве электролита для химических резервных источников тока.

Военное дело

Свойство магния гореть белым ослепительным пламенем широко используется в военной технике для изготовления осветительных и сигнальных ракет, трассирующих пуль и снарядов, зажигательных бомб. В смеси с соответствующими окислителями он также является основным компонентом заряда светошумовых боеприпасов.

Медицина

Магний является жизненно-важным элементом, который находится во всех тканях организма и необходим для нормального функционирования клеток. Участвует в большинстве реакций обмена веществ, в регуляции передачи нервных импульсов и в сокращении мышц, оказывает спазмолитическое и антиагрегантное действие. Оксид и соли магния традиционно применяются в медицине в кардиологии, неврологии и гастроэнтерологии (аспаркам, сульфат магния, цитрат магния). В то же время, использование солей магния в кардиологии при нормальном уровне ионов магния в крови является недостаточно обоснованным[9].

Фотография

Магниевый порошок с окисляющими добавками (нитрат бария, перманганат калия, гипохлорит натрия, хлорат калия и т. д.) применялся (и применяется сейчас в редких случаях) в фотоделе в химических фотовспышках (магниевая фотовспышка).

Аккумуляторы

Магниево-серные батареи являются одними из самых перспективных, теоретически превосходя ёмкость ионно-литиевых, однако пока эта технология находится на стадии лабораторных исследований в силу непреодолимости некоторых технических препятствий[10].

Производство

Производство в России сосредоточено на двух предприятиях : г.Соликамск (СМЗ) и г.Березники (АВИСМА). Общая производительность составляет, примерно, 35 тыс. тонн в год. [11]

Цены

Цены на магний в слитках в 2006 году составили в среднем 3 долл./кг. В 2012 году цены на магний составляли порядка 2,8—2,9 долл./кг.

Биологическая роль и токсикология

Токсикология

Соединения магния малотоксичны (за исключением солей таких ядовитых кислот, как синильная, азотистоводородная, плавиковая, хромовая).

Биологическая роль

Магний — один из важных биогенных элементов, в значительных количествах содержится в тканях животных и растений (хлорофиллы). Его биологическая роль сформировалась исторически в период зарождения и развития протожизни на нашей планете в связи с тем, что солевой состав морской воды древней Земли был преимущественно хлоридно-магниевый, в отличие от нынешнего — хлоридно-натриевого.

Магний является кофактором многих ферментативных реакций. Магний необходим для превращения креатинфосфата в АТФ — нуклеотид, являющийся универсальным поставщиком энергии в живых клетках организма. Магний необходим на всех этапах синтеза белка. Он участвует в поддержании нормальной функции нервной системы и мышцы сердца, оказывает сосудорасширяющее действие, стимулирует желчеотделение, повышает двигательную активность кишечника, что способствует выведению из организма холестерина[12].

Усвоению магния мешают наличие фитина и избыток жиров и кальция в пище[12]. Недостаток магния в организме может проявляться по-разному: бессонница, хроническая усталость, остеопороз, артрит, фибромиалгия, мигрень, мышечные судороги и спазмы, сердечная аритмия, запоры, предменструальный синдром (ПМС). При потливости, частом употреблении слабительных и мочегонных, алкоголя, больших психических и физических нагрузках (в первую очередь при стрессах и у спортсменов) потребность в магнии увеличивается.

Более всего магния содержится в пшеничных отрубях, тыквенных семечках, какао-порошке[13]. К пище, богатой магнием относят также кунжут, отруби, орехи. Однако обилие фитина в этих продуктах делает его малодоступным для усвоения, поэтому только зелёные овощи могут служить надёжным источником магния. Магния совсем мало в хлебе, молочных, мясных и других повседневных продуктах питания современного человека. Суточная норма магния — порядка 300 мг для женщин и 400 мг для мужчин (предполагается, что всасывается около 30 % магния).

Одним из наиболее биологически целесообразных источников магния при транскутанном (чрезкожном) всасывании является минерал бишофит, широко использующийся в целях медицинской реабилитации, физиотерапии и санаторно-курортного лечения. Преимуществом транскутанного применения является высокая биодоступность ионов магния, насыщающего локальные проблемные зоны, минуя выделительную систему.

Таблица нормы потребления магния

Пол Возраст Суточная норма потребления магния, мг/день Верхний допустимый предел, мг/день
Младенцы от 0 до 6 месяцев 30 Не определён
Младенцы от 7 до 12 месяцев 75 Не определён
Дети от 1 до 3 лет 80 145
Дети от 4 до 8 лет 130 240
Дети от 9 до 13 лет 240 590
Девушки от 14 до 18 лет 360 710
Юноши от 14 до 18 лет 410 760
Мужчины от 19 до 30 лет 400 750
Мужчины 31 год и старше 420 770
Женщины от 19 до 30 лет 310 660
Женщины 31 год и старше 320 670
Беременные женщины от 14 до 18 лет 400 750
Беременные женщины от 19 до 30 лет 350 700
Беременные женщины 31 год и старше 360 710
Кормящие грудью женщины от 14 до 18 лет 360 710
Кормящие грудью женщины от 19 до 30 лет 310 660
Кормящие грудью женщины 31 год и старше 320 670

Комментарии

  1. ↑ Указан диапазон значений атомной массы в связи с неоднородностью распространения изотопов в природе.

Источники

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047-1078. — DOI:10.1351/PAC-REP-13-03-02.
  2. 1 2 3 4 Magnesium: physical properties (англ.). WebElements. Проверено 15 августа 2013.
  3. ↑ Химическая энциклопедия : в 5 т / редкол.: Кнунянц И. Л. (гл. ред.). — Москва: Советская энциклопедия, 1990. — Т. 2. — С. 621. — 671 с. — 100 000 экз.
  4. ↑ Three alkali metals for Discovery of the Elements (недоступная ссылка)
  5. Новгородова М. И. Обнаружен самородный магний? // Природа. — 1991. — № 1. — С. 32—33.
  6. Новгородова М. И. Самородный магний и проблема его генезиса // Геохимия. — 1996. — № 1. — С. 41—50.
  7. Новгородова М. И. Магний — самородный, как золото… // Химия и жизнь — XXI век. — 2000. — № 7. — С. 18—19.
  8. Елена Савинкина. Магний. Энциклопедия Кругосвет. Проверено 8 сентября 2012. Архивировано 14 октября 2012 года.
  9. Старостин И.В. Место солей магния в терапии сердечно-сосудистых заболеваний. (рус.) // Кардиология. — 2012. — Т. 52, № 8. — С. 83-88.
  10. ↑ Химики нашли ключ к новому типу аккумуляторов http://www.membrana.ru/particle/16564
  11. ↑ Лысенко А.П.
  12. 1 2 Пищевая химия : [учеб. для вузов / Нечаев А. П., Траубенберг С. Е., Кочеткова А. А. и др.]; под ред. А. П. Нечаева. — Изд. 4-е, испр. и доп. — СПб. : ГИОРД, 2007. — 635 с.— 1000 экз. — ISBN 5-98879-011-9.
  13. ↑ Содержание магния в продуктах питания

Литература

  • Эйдензон М. А. Магний / Тихонов В. Н. — М., 1969.
  • Аналитическая химия магния / Иванов А. И., Ляндрес М. Б., Прокофьев О. В. — М., 1973.
  • Производство магния / С. И. Дракин. П. М. Чукуров. — М., 1979.
  • Дэвис А. Нутрицевтика. Питание для жизни, здоровья и долголетия. — М.: Саттва, Институт трансперсональной психологии, 2004. — С.180—188. — ISBN.5-93509-021-X.
  • Минделл Э. Справочник по витаминам и минеральным веществам. — М.: Медицина и питание, 2000. — С. 83—85. — ISBN.5-900059-03-0.

Ссылки

  • Latest Magnesium News (англ.). Magnesium .com. Проверено 30 октября 2013.
  • Магний. Популярная библиотека химических элементов. Проверено 30 октября 2013.

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

wikipedia.green

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *