Среда, 25 декабря

Белок определение – Белки — это… Что такое Белки?

Типы белков: классификация, определение и примеры

Белок — это макромолекула, которыми изобилуют клетки. Каждый из них выполняет определенную функцию, но не все они одинаковы, поэтому имеют определенную классификацию, которая определяет различные типы белков. Эта классификация является полезной для рассмотрения.

Определение белков: Что такое белок?

Белок, от греческого «πρωτεῖος», являются биомолекулами, образованными линейными цепочками аминокислот.

Благодаря своим физико-химическим свойствам белки можно классифицировать как простые белки (голопротеиды), образованные только аминокислотами или их производными; конъюгированные белки (гетеропротеиды), образованные аминокислотами, сопровождающимися различными веществами, и производными белками, веществами, образованными денатурацией и расщеплением предыдущих.

Определение белков

Белки необходимы для жизни, особенно из-за их пластической функции (они составляют 80% обезвоженной протоплазмы каждой клетки), но также из-за их биорегуляторных функций (они являются частью ферментов) и защиты (антитела являются белками).

Белки играют жизненно важную роль для жизни и являются самыми универсальными и разнообразными биомолекулами. Они необходимы для роста организма и выполняют огромное количество различных функций, среди которых:

  • Строительство тканей. Это самая важная функция белка (например: коллаген)
  • Контрабильность (актин и миозин)
  • Ферментативный (например: сукраза и пепсин)
  • Гомеостатик: сотрудничает в поддержании рН (поскольку они действуют как химический буфер)
  • Иммунологические (антитела)
  • Рубцевание ран (например, фибрин)
  • Защитные (например, тромбин и фибриноген)
  • Трансдукция сигнала (например, родопсин).

Белки образованы аминокислотами. Белки всех живых существ определяются главным образом их генетикой (за исключением некоторых антимикробных пептидов не рибосомального синтеза), то есть генетическая информация в значительной степени определяет, какие белки представляют клетка, ткань и организм.

Белки синтезируются в зависимости от того, как регулируются гены, которые их кодируют. Поэтому они восприимчивы к сигналам или внешним факторам. Набор белков, выраженный в данном случае, называется протеомом.

Свойства белков

Пять основных свойств, которые позволяют существование и обеспечить функцию белков:

  1. PH-буфер (известный как буферный эффект): они действуют как буферы рН из-за их амфотерного характера, то есть они могут вести себя как кислоты (донорские электроны) или как основания (прием электронов).
  2. Электролитическая способность: определяется методом электрофореза, аналитическим методом, в котором, если белки переносятся на положительный полюс, это происходит потому, что их молекула имеет отрицательный заряд и наоборот.
  3. Специфичность: каждый белок имеет определенную функцию, которая определяется его первичной структурой.
  4. Стабильность: белок должен быть стабильным в среде, где он выполняет свою функцию. Для этого большинство водных белков создают упакованное гидрофобное ядро. Это связано с периодом полураспада и оборотом белка.
  5. Растворимость: необходимо сольватировать белок, который достигается путем воздействия на поверхность белка остатков с одинаковой степенью полярности. Он поддерживается до тех пор, пока присутствуют сильные и слабые связи. Если температура и рН увеличиваются, растворимость теряется.

Свойства белков

Денатурация белков

Если изменения в рН, изменения концентрации, молекулярное возбуждение или внезапные изменения температуры происходят в белковом растворе, растворимость белков может быть уменьшена до точки осаждения. Это связано с тем, что связи, которые поддерживают глобулярную конформацию, разрушаются, а белок принимает нитевидную конформацию. Таким образом, слой молекул воды не полностью покрывает молекулы белка, которые имеют тенденцию связываться друг с другом, приводя к образованию крупных частиц, которые выпадают в осадок.

Кроме того, его биокаталитические свойства исчезают при изменении активного центра. Белки, находящиеся в этом состоянии, не могут выполнять деятельность, для которой они были разработаны, короче говоря, они не функционируют.

Этот вариант конформации называется денатурацией. Денатурация не влияет на пептидные связи: при возвращении в нормальные состояния может произойти, что белок восстанавливает примитивную конформацию, которая называется ренатурацией.

Примерами денатурации являются вырезание молока в результате денатурации казеина, осаждение яичного белка, когда овальбумин денатурируется действием тепла или фиксацией расчесанных волос в результате воздействия тепла на кератины волос.

Классификация белков

Согласно форме

Волокнистые белки: они имеют длинные полипептидные цепи и атипичную вторичную структуру. Они нерастворимы в воде и в водных растворах. Некоторыми примерами этого являются кератин, коллаген и фибрин.

Шаровидные белки: характеризуются складыванием своих цепей в плотную или компактную сферическую форму, оставляя гидрофобные группы в белковой и гидрофильной группах наружу, что делает их растворимыми в полярных растворителях, таких как вода. Большинство ферментов, антител, некоторых гормонов и транспортных белков являются примерами глобулярных белков.

Смешанные белки: они имеют фибриллярную часть (обычно в центре белка) и другую шаровидную часть (в конце).

Согласно химическому составу

Простые белки или голопротеиды: при их гидролизе производятся только аминокислоты. Примерами таких веществ являются инсулин и коллаген (шаровидные и волокнистые), альбумины.

Конъюгированные или гетеропротеины: эти белки содержат полипептидные цепи и протезную группу. Неаминокислотная часть называется протезной группой, это могут быть нуклеиновая кислота, липид, сахар или неорганический ион. Примерами этого являются миоглобин и цитохром. Конъюгированные белки или гетеропротеины классифицируются по характеру их протезной группы:

  • Нуклеопротеиды: нуклеиновые кислоты.
  • Липопротеины: фосфолипиды, холестерин и триглицериды.
  • Металлопротеины: группа состоит из металлов.
  • Хромопротеины: это белки, конъюгированные с хромофорной группой (окрашенное вещество, содержащее металл).
  • Гликопротеины: группа состоит из углеводов.
  • Фосфопротеины: белки, конъюгированные с радикалом, содержащим фосфат, отличным от нуклеиновой кислоты или фосфолипида.

Источники белка

Источники белка растительного происхождения, такие как бобовые, имеют более низкое качество чем белки животного происхождения, потому что они представляют менее важные аминокислоты, что компенсируется подходящей смесью обоих.

Взрослый должен употреблять белка в соответствии с образом жизни, то есть, чем больше физической активности, тем потребуется больше источников белка чем сидячих.

Источники белка

В пожилом возрасте, все еще выглядящим противоречиво, нет необходимости в более низком потреблении белка, но рекомендуется увеличить их количество, потому что на этом этапе очень важно регенерировать ткани. Кроме того, мы должны учитывать возможное появление хронических заболеваний, которые могут деградировать белки.

Здесь мы расскажем вам, какие продукты являются лучшими источниками белка:

Продукты с животными белками

  • Яйца: это хороший источник белка, потому что он содержит альбумин превосходного качества, так как он содержит большое количество незаменимых аминокислот.
  • Рыба (лосось, сельдь, тунец, треска, форель …).
  • Молоко.
  • Молочные продукты, сыр или йогурт.
  • Красное мясо, индейка, вырезка и курица.

Эти продукты содержат белки с большим количеством незаменимых аминокислот (те, которые не могут быть синтезированы организмом, поэтому они должны поступать вместе с пищей).

Продукты с белками растительного происхождения

  • Бобовые (чечевица, фасоль, нут, горох …) должны быть дополнены другими продуктами, такими как картофель или рис.
  • Зеленые листовые овощи (капуста, шпинат …).
  • Орехи, такие как фисташки или миндаль (при условии, что они не жареные и не соленые).
  • Сейтан, киноа, соевые бобы, морские водоросли.

Переваривание белков

Переваривание белков обычно инициируется в желудке, когда пепсиноген превращается в пепсин под действием соляной кислоты и продолжается действием трипсина и химотрипсина в кишечнике.

Диетические белки деградируют до все более мелких пептидов, и до аминокислот и их производных, которые абсорбируются желудочно-кишечным эпителием. Скорость поглощения отдельных аминокислот сильно зависит от источника белка. Например, переваримость многих аминокислот у людей различается между соевым белком и молочным белком и между отдельными молочными белками, такими как бета-лактоглобулин и казеин.

Переваривание белков

Для молочных белков приблизительно 50% потребляемого белка переваривается в желудке или тонкой кишке, а 90% уже переваривается, когда проглоченная пища достигает подвздошной кишки.
Помимо своей роли в синтезе белка, аминокислоты также являются важным источником питания азота. Белки, как и углеводы, содержат четыре килокалории на грамм, тогда как липиды содержат девять ккал. Спирты — семь ккал. Аминокислоты могут быть превращены в глюкозу посредством процесса, называемого глюконеогенезом.

Читайте также:

Жмите кнопку «Поделиться» в соцсетях, чтобы не потерять информацию

tagweb.ru

Белки это что такое, из чего состоят и какие бывают

Белки – это органические вещества, которые играют роль строительного материала в человеческом организме клеток, органов, тканей и синтеза гормонов и ферментов. Они отвечают за много полезных функций, сбой которых приводит к нарушению жизнедеятельности, а также образуют соединения, обеспечивающие устойчивость иммунитета к инфекциям. Белки состоят из аминокислот. Если их соединять в разной последовательности, образуется более миллиона разных химических веществ. Они делятся на несколько групп, которые одинаково важны для человека.

Белковые продукты способствуют росту мышечной массы, поэтому бодибилдеры насыщают свой рацион именно белковой пищей. Она содержит мало углеводов, а соответственно и низкий гликемический индекс, поэтому полезна для диабетиков. Здоровому человеку диетологи рекомендуют употреблять 0.75 – 0.80 гр. качественного компонента на 1 кг веса. Для роста новорожденного необходимо до 1,9 гр. Недостаток белков приводит к нарушению жизненно важных функций внутренних органов. Кроме этого нарушается обмен веществ, и развивается атрофия мышц. Поэтому белки невероятно важны. Давайте изучим их детальнее, чтобы правильно сбалансировать свой рацион и создать идеальное меню для похудения или набора мышечной массы.

Содержание статьи

Немного теории

В погоне за идеальной фигурой не все знают, что такое белки, хотя активно пропагандируют низкоуглеводные диеты. Чтобы избежать ошибок в употреблении белковой пищи, выясним, что он собой представляет. Белок или протеин – это высокомолекулярные органические соединения. Они состоят из альфа-кислот и с помощью пептидных связей соединяются в единую цепочку.

В состав входит 9 незаменимых аминокислот, которые не синтезируются. К ним относятся:

  • лейцин;
  • изолейцин;
  • валин;
  • фенилаланин;
  • лицин;
  • метионин;
  • триптофан;
  • треонин;
  • гистидин.

Также содержится 11 заменимых аминокислот и других, которые играют роль в метаболизме. Но самыми важными аминокислотами считается лейцин, изолейцин и валин, которые известны как BCAA. Рассмотрим их назначение и источники.

Аминокислоты Назначение Природные источники
Валин Препятствует снижению уровня серотонина, поставляет энергию в мышечные клетки Яичный белок, мясные белки, белки риса, лесного ореха, казеин
Изолейцин Способствует выработке энергии для мышечных клеток, предотвращает перепроизводство серотонина Белок молочной сыворотки, лесного ореха, куриных яиц, мяса, казеин
Лейцин Предназначен для роста и строительства мышечной ткани, образования соединений в печени и мышцах, препятствует разрушениям белковых молекул и понижению уровня серотонина. Прекрасный источник энергии. Белок молочной сыворотки, овса, кукурузы, пшена, куриного яйца, лесного ореха, творог

Как мы видим, каждая из аминокислот имеет значение в образовании и поддержке мышечной энергии. Чтобы все функции выполнялись без сбоев, их нужно вводить в ежедневный рацион в качестве биологически активных добавок или натуральной пищи.

ВидеоВидео

Какое количество аминокислот необходимо для правильной работы организма?

Лейцин Изолейцин Валин
Потребность человека в аминокислоте (г/100 г.)
Минимальный уровень 2,5 1,8 1,8
Рекомендуемый уровень 7 4 5
Аминокислотный состав пищевых белков (г/100 г.)
Яичный белок 9,9 5,5 7,7
Казеин (творог) 9,2 6,1 7,2
Соевый белок 8,2 4,9 5
Рыбный белок 8,6 4,5 5
Белок риса 8,6 4,4 6,1
Сывороточный белок 12,3 6,2 5,7

Все перечисленные белковые соединения содержат в составе фосфор, кислород, азот, серу, водород, и углерод. Поэтому соблюдается положительный азотный баланс, необходимый для роста красивых рельефных мышц.

Интересно! В процессе жизнедеятельности человека, доля белков теряется (примерно 25 – 30 грамм). Поэтому они постоянно должны присутствовать в еде, потребляемой человеком.

Существует два основных вида белков: растительные и животные. Их принадлежность определяется в зависимости от того, откуда они поступают в органы и ткани.  К первой группе относятся белки, получаемые из соевых продуктов, орехов, авокадо, гречки, спаржи. А ко второй – из яиц, рыбы, мяса и молочных продуктов.

ВидеоВидео

Строение белков

Чтобы понять, из чего состоит белок, следует подробно рассмотреть их строение. Соединения могут быть первичной, вторичной, третичной и четвертичной структуры.

  • Первичная. В ней аминокислоты соединены последовательно и определяют вид, химические и физические свойства протеина.
  • Вторичная – форма полипептидной цепи, которая образовывается за счет водородных связей имино- и карбоксильных групп. Наиболее распространены альфа-спираль и бета-структура.
  • Третичная заключается в расположении и чередовании бета-структур, полипептидных цепей и альфа-спирали.
  • Четвертичная формируется за счет водородных связей и электростатических взаимодействий.

Видео

Состав белков представлен комбинируемыми аминокислотами в разном количестве и порядке. По типу строения их можно поделить на две группы: простые и сложные, в состав которых входят неаминокислотные группы.

Важно! Тем, кто хочет похудеть или улучшить свою физическую форму, диетологи рекомендуют употреблять белковые продукты. Они надолго избавляют от чувства голода и ускоряют метаболизм.

Кроме строительной функции белки обладают рядом других полезных свойств, о которых речь пойдет дальше.

Мнение эксперта

Мнение врача-диетолога Егоровой Н.С.

Егорова Наталья Сергеевна
Врач-диетолог, г. Нижний Новгород

Хочу разъяснить касательно защитной, каталитической и регуляторной функций белков, поскольку это довольно сложная тема.

Большая часть веществ, регулирующих жизнедеятельность организма, имеет белковую природу, то есть состоит из аминокислот. Белки входят в структуру абсолютно всех ферментов — каталитических веществ, которые обеспечивают нормальное протекание абсолютно всех биохимических реакций в организме. А это значит, что без них невозможен энергетический обмен и даже построение клеток.

Из белков состоят гормоны гипоталамуса и гипофиза, которые, в свою очередь, регулируют работу всех внутренних желез. Гормоны поджелудочной железы (инсулин и глюкагон) по структуре также являются пептидами. Таким образом, белки оказывают непосредственно влияние на обмен веществ и многие физиологические функции в организме. Без них невозможен рост, размножение и даже нормальная жизнедеятельность индивида.

Ну и наконец касательно защитной функции. Все иммуноглобулины (антитела) имеют белковую структуру. А они обеспечивают гуморальный иммунитет, то есть защищают организм от инфекций и помогают не болеть.

Функции белков

Бодибилдеров в основном интересует функция роста, но кроме нее белки выполняют еще много задач, не менее важных:

Функция Примеры и комментарии
Строительная Белки входят в клеточные мембраны, сухожилия, волосы, тем самым участвуют в формировании клеточных и внеклеточных структур.
Регуляторная Гормоны белковой природы ускоряют процессы обмена веществ на 30%. Например, инсулин увеличивает образование жиров из углеводов, а также регулирует уровень глюкозы в кро

diets.guru

Значение слова БЕЛКИ. Что такое БЕЛКИ?

Белки́ (протеи́ны, полипепти́ды) — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

Функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров — полисахаридов и ДНК. Так, белки-ферменты катализируют протекание биохимических реакций и играют важную роль в обмене веществ. Некоторые белки выполняют структурную или механическую функцию, образуя цитоскелет, поддерживающий форму клеток. Также белки играют ключевую роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле.

Белки — важная часть питания животных и человека (основные источники: мясо, птица, рыба, молоко, орехи, бобовые, зерновые; в меньшей степени: овощи, фрукты, ягоды и грибы), поскольку в их организмах не могут синтезироваться все необходимые аминокислоты и часть должна поступать с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются для биосинтеза собственных белков организма или подвергаются дальнейшему распаду для получения энергии.

Определение аминокислотной последовательности первого белка — инсулина — методом секвенирования белков принесло Фредерику Сенгеру Нобелевскую премию по химии в 1958 году. Первые трёхмерные структуры белков гемоглобина и миоглобина были получены методом дифракции рентгеновских лучей, соответственно, Максом Перуцем и Джоном Кендрю в конце 1950-х годов, за что в 1962 году они получили Нобелевскую премию по химии.

kartaslov.ru

БЕЛКИ — это… Что такое БЕЛКИ?

где R — атом водорода или какая-нибудь органическая группа. Белковая молекула (полипептидная цепь) может состоять всего лишь из относительно небольшого числа аминокислот или из нескольких тысяч мономерных звеньев. Соединение аминокислот в цепи возможно потому, что у каждой из них имеются две разные химические группы: обладающая основными свойствами аминогруппа, Nh3, и кислотная карбоксильная группа, СООН. Обе эти группы присоединены к a-атому углерода. Карбоксильная группа одной аминокислоты может образовать амидную (пептидную) связь с аминогруппой другой аминокислоты:


После того как две аминокислоты таким образом соединились, цепь может наращиваться путем добавления ко второй аминокислоте третьей и т.д. Как видно из приведенного выше уравнения, при образовании пептидной связи выделяется молекула воды. В присутствии кислот, щелочей или протеолитических ферментов реакция идет в обратном направлении: полипептидная цепь расщепляется на аминокислоты с присоединением воды. Такая реакция называется гидролизом. Гидролиз протекает спонтанно, а для соединения аминокислот в полипептидную цепь требуется энергия. Карбоксильная группа и амидная группа (или сходная с ней имидная — в случае аминокислоты пролина) имеются у всех аминокислот, различия же между аминокислотами определяются природой той группы, или «боковой цепи», которая обозначена выше буквой R. Роль боковой цепи может играть и один атом водорода, как у аминокислоты глицина, и какая-нибудь объемистая группировка, как у гистидина и триптофана. Некоторые боковые цепи в химическом смысле инертны, тогда как другие обладают заметной реакционной способностью. Синтезировать можно многие тысячи различных аминокислот, и множество различных аминокислот встречается в природе, но для синтеза белков используется только 20 видов аминокислот: аланин, аргинин, аспарагин, аспарагиновая кислота, валин, гистидин, глицин, глутамин, глутаминовая кислота, изолейцин, лейцин, лизин, метионин, пролин, серин, тирозин, треонин, триптофан, фенилаланин и цистеин (в белках цистеин может присутствовать в виде димера — цистина). Правда, в некоторых белках присутствуют и другие аминокислоты, помимо регулярно встречающихся двадцати, но они образуются в результате модификации какой-нибудь из двадцати перечисленных уже после того, как она включилась в белок.
Оптическая активность. У всех аминокислот, за исключением глицина, к a-атому углерода присоединены четыре разные группы. С точки зрения геометрии, четыре разные группы могут быть присоединены двумя способами, и соответственно есть две возможные конфигурации, или два изомера, относящиеся друг к другу, как предмет к своему зеркальному отражению, т.е. как левая рука к правой. Одну конфигурацию называют левой, или левовращающей (L), а другую — правой, или правовращающей (D), поскольку два таких изомера различаются направлением вращения плоскости поляризованного света. В белках встречаются только L-аминокислоты (исключение составляет глицин; он может быть представлен лишь одной формой, поскольку у него две из четырех групп одинаковы), и все они обладают оптической активностью (поскольку имеется только один изомер). D-аминокислоты в природе редки; они встречаются в некоторых антибиотиках и клеточной оболочке бактерий.
АСИММЕТРИЧЕСКИЙ АТОМ УГЛЕРОДА в молекуле аминокислоты изображен здесь в виде шарика, помещенного в центр тетраэдра. Представленное расположение четырех замещающих групп соответствует L-конфигурации, характерной для всех природных аминокислот.
АСИММЕТРИЧЕСКИЙ АТОМ УГЛЕРОДА в молекуле аминокислоты изображен здесь в виде шарика, помещенного в центр тетраэдра. Представленное расположение четырех замещающих групп соответствует L-конфигурации, характерной для всех природных аминокислот.

Последовательность аминокислот. Аминокислоты в полипептидной цепи располагаются не случайным образом, а в определенном фиксированном порядке, и именно этот порядок определяет функции и свойства белка. Варьируя порядок расположения 20 видов аминокислот, можно получить огромное число разных белков, точно так же, как из букв алфавита можно составить множество разных текстов. В прошлом на определение аминокислотной последовательности какого-нибудь белка уходило нередко несколько лет. Прямое определение и теперь достаточно трудоемкое дело, хотя созданы приборы, позволяющие вести его автоматически. Обычно проще бывает определить нуклеотидную последовательность соответствующего гена и вывести из нее аминокислотную последовательность белка. К настоящему времени уже определены аминокислотные последовательности многих сотен белков. Функции расшифрованных белков, как правило, известны, и это помогает представить себе возможные функции сходных белков, образующихся, например, при злокачественных новообразованиях.
Сложные белки. Белки, состоящие из одних только аминокислот, называют простыми. Часто, однако, к полипептидной цепи бывают присоединены атом металла или какое-нибудь химическое соединение, не являющееся аминокислотой. Такие белки называются сложными. Примером может служить гемоглобин: он содержит железопорфирин, который определяет его красный цвет и позволяет ему играть роль переносчика кислорода. В названиях большинства сложных белков содержится указание на природу присоединенных групп: в гликопротеинах присутствуют сахара, в липопротеинах — жиры. Если от присоединенной группы зависит каталитическая активность фермента, то ее называют простетической группой. Нередко какой-нибудь витамин играет роль простетической группы или входит в ее состав. Витамин А, например, присоединенный к одному из белков сетчатки, определяет ее чувствительность к свету.
Третичная структура. Важна не столько сама аминокислотная последовательность белка (первичная структура), сколько способ ее укладки в пространстве. По всей длине полипептидной цепи ионы водорода образуют регулярные водородные связи, которые придают ей форму спирали либо слоя (вторичная структура). Из комбинации таких спиралей и слоев возникает компактная форма следующего порядка — третичная структура белка. Вокруг связей, удерживающих мономерные звенья цепи, возможны повороты на небольшие углы. Поэтому с чисто геометрической точки зрения число возможных конфигураций для любой полипептидной цепи бесконечно велико. В действительности же каждый белок существует в норме только в одной конфигурации, определяемой его аминокислотной последовательностью. Структура эта не жесткая, она как бы «дышит» — колеблется вокруг некой средней конфигурации. Цепь складывается в такую конфигурацию, при которой свободная энергия (способность производить работу) минимальна, подобно тому как отпущенная пружина сжимается лишь до состояния, соответствующего минимуму свободной энергии. Нередко одна часть цепи бывает жестко сцеплена с другой дисульфидными (-S-S-) связями между двумя остатками цистеина. Отчасти именно поэтому цистеин среди аминокислот играет особо важную роль. Сложность строения белков столь велика, что пока еще невозможно вычислить третичную структуру белка, если даже известна его аминокислотная последовательность. Но если удается получить кристаллы белка, то его третичную структуру можно определить по дифракции рентгеновских лучей. У структурных, сократительных и некоторых других белков цепи вытянуты и несколько лежащих рядом слегка свернутых цепей образуют фибриллы; фибриллы, в свою очередь, складываются в более крупные образования — волокна. Однако большинство белков в растворе имеет глобулярную форму: цепи свернуты в глобуле, как пряжа в клубке. Свободная энергия при такой конфигурации минимальна, поскольку гидрофобные («отталкивающие воду») аминокислоты скрыты внутри глобулы, а гидрофильные («притягивающие воду») находятся на ее поверхности. Многие белки — это комплексы из нескольких полипептидных цепей. Такое строение называется четвертичной структурой белка. Молекула гемоглобина, например, состоит из четырех субъединиц, каждая из которых представляет собой глобулярный белок. Структурные белки благодаря своей линейной конфигурации образуют волокна, у которых предел прочности на разрыв очень высок, глобулярная же конфигурация позволяет белкам вступать в специфические взаимодействия с другими соединениями. На поверхности глобулы при правильной укладке цепей возникают определенной формы полости, в которых размещены реакционноспособные химические группы. Если данный белок — фермент, то другая, обычно меньшая, молекула какого-то вещества входит в такую полость подобно тому, как ключ входит в замок; при этом меняется конфигурация электронного облака молекулы под влиянием находящихся в полости химических групп, и это вынуждает ее определенным образом реагировать. Таким способом фермент катализирует реакцию. В молекулах антител тоже имеются полости, в которых различные чужеродные вещества связываются и тем самым обезвреживаются. Модель «ключа и замка», объясняющая взаимодействие белков с другими соединениями, позволяет понять специфичность ферментов и антител, т.е. их способность реагировать только с определенными соединениями. Белки у разных видов организмов. Белки, выполняющие одну и ту же функцию у разных видов растений и животных и потому носящие одно и то же название, имеют и сходную конфигурацию. Они, однако, несколько различаются по своей аминокислотной последовательности. По мере того как виды дивергируют от общего предка, некоторые аминокислоты в определенных положениях замещаются в результате мутаций другими. Вредные мутации, являющиеся причиной наследственных болезней, выбраковываются естественным отбором, но полезные или по крайней мере нейтральные могут сохраняться. Чем ближе друг к другу два каких-нибудь биологических вида, тем меньше различий обнаруживается в их белках. Некоторые белки меняются относительно быстро, другие весьма консервативны. К последним принадлежит, например, цитохром с — дыхательный фермент, имеющийся у большинства живых организмов. У человека и шимпанзе его аминокислотные последовательности идентичны, а в цитохроме с пшеницы иными оказались лишь 38% аминокислот. Даже сравнивая человека и бактерии, сходство цитохромов с (различия затрагивают здесь 65% аминокислот) все еще можно заметить, хотя общий предок бактерии и человека жил на Земле около двух миллиардов лет назад. В наше время сравнение аминокислотных последовательностей часто используют для построения филогенетического (генеалогического) древа, отражающего эволюционные связи между разными организмами.
Денатурация. Синтезированная молекула белка, складываясь, приобретает свойственную ей конфигурацию. Эта конфигурация, однако, может разрушиться при нагревании, при изменении рН, под действием органических растворителей и даже при простом взбалтывании раствора до появления на его поверхности пузырьков. Измененный таким образом белок называют денатурированным; он утрачивает свою биологическую активность и обычно становится нерастворимым. Хорошо знакомые всем примеры денатурированного белка — вареные яйца или взбитые сливки. Небольшие белки, содержащие всего лишь около сотни аминокислот, способны ренатурировать, т.е. вновь приобретать исходную конфигурацию. Но большинство белков превращается при этом просто в массу спутанных полипептидных цепей и прежнюю конфигурацию не восстанавливает. Одна из главных трудностей при выделении активных белков связана с их крайней чувствительностью к денатурации. Полезное применение это свойство белков находит при консервировании пищевых продуктов: высокая температура необратимо денатурирует ферменты микроорганизмов, и микроорганизмы погибают.
СИНТЕЗ БЕЛКОВ
Для синтеза белка живой организм должен располагать системой ферментов, способных присоединять одну аминокислоту к другой. Необходим также источник информации, которая бы определяла, какие именно аминокислоты следует соединять. Поскольку в организме имеются тысячи видов белков и каждый из них состоит в среднем из нескольких сотен аминокислот, необходимая информация должна быть поистине огромной. Хранится она (подобно тому, как хранится запись на магнитной ленте) в молекулах нуклеиновых кислот, из которых состоят гены.
См. также
НАСЛЕДСТВЕННОСТЬ;
НУКЛЕИНОВЫЕ КИСЛОТЫ.
Активация ферментов. Синтезированная из аминокислот полипептидная цепь — это далеко не всегда белок в его окончательной форме. Многие ферменты синтезируются сначала в виде неактивных предшественников и переходят в активную форму лишь после того, как другой фермент удалит на одном из концов цепи несколько аминокислот. В такой неактивной форме синтезируются некоторые из пищеварительных ферментов, например трипсин; эти ферменты активируются в пищеварительном тракте в результате удаления концевого фрагмента цепи. Гормон инсулин, молекула которого в активной форме состоит из двух коротких цепей, синтезируется в виде одной цепи, т.н. проинсулина. Затем средняя часть этой цепи удаляется, а оставшиеся фрагменты связываются друг с другом, образуя активную молекулу гормона. Сложные белки образуются лишь после того, как к белку будет присоединена определенная химическая группа, а для этого присоединения часто тоже требуется фермент.
Метаболический кругооборот. После скармливания животному аминокислот, меченных радиоактивными изотопами углерода, азота или водорода, метка быстро включается в его белки. Если меченые аминокислоты перестают поступать в организм, то количество метки в белках начинает снижаться. Эти эксперименты показывают, что образовавшиеся белки не сохраняются в организме до конца жизни. Все они, за немногими исключениями, находятся в динамичном состоянии, постоянно распадаются до аминокислот, а затем вновь синтезируются. Некоторые белки распадаются, когда гибнут и разрушаются клетки. Это постоянно происходит, например, с эритроцитами и клетками эпителия, выстилающего внутреннюю поверхность кишечника. Кроме того, распад и ресинтез белков протекают и в живых клетках. Как ни странно, о распаде белков известно меньше, чем об их синтезе. Ясно, однако, что в распаде участвуют протеолитические ферменты, сходные с теми, которые расщепляют белки до аминокислот в пищеварительном тракте. Период полураспада у разных белков различен — от нескольких часов до многих месяцев. Единственное исключение — молекулы коллагена. Однажды образовавшись, они остаются стабильными, не обновляются и не замещаются. Со временем, однако, меняются некоторые их свойства, в частности эластичность, а поскольку они не обновляются, следствием этого оказываются определенные возрастные изменения, например появление морщин на коже.
Синтетические белки. Химики давно уже научились полимеризовать аминокислоты, но аминокислоты соединяются при этом неупорядоченно, так что продукты такой полимеризации мало похожи на природные. Правда, имеется возможность соединять аминокислоты в заданном порядке, что позволяет получать некоторые биологически активные белки, в частности инсулин. Процесс достаточно сложен, и таким способом удается получать лишь те белки, в молекулах которых содержится около сотни аминокислот. Предпочтительнее вместо этого синтезировать или выделить нуклеотидную последовательность гена, соответствующую желаемой аминокислотной последовательности, а затем ввести этот ген в бактерию, которая и будет вырабатывать путем репликации большое количество нужного продукта. У этого метода, впрочем, тоже есть свои недостатки.
См. также ГЕННАЯ ИНЖЕНЕРИЯ.
БЕЛКИ И ПИТАНИЕ
Когда белки в организме распадаются до аминокислот, эти аминокислоты могут быть снова использованы для синтеза белков. В то же время и сами аминокислоты подвержены распаду, так что они реутилизируются не полностью. Ясно также, что в период роста, при беременности и заживлении ран синтез белков должен превышать распад. Некоторые же белки организм непрерывно теряет; это белки волос, ногтей и поверхностного слоя кожи. Поэтому для синтеза белков каждый организм должен получать аминокислоты с пищей.
Источники аминокислот. Зеленые растения синтезируют из СО2, воды и аммиака или нитратов все 20 аминокислот, встречающихся в белках. Многие бактерии тоже способны синтезировать аминокислоты при наличии сахара (или какого-нибудь его эквивалента) и фиксированного азота, но и сахар, в конечном счете, поставляется зелеными растениями. У животных способность к синтезу аминокислот ограниченна; они получают аминокислоты, поедая зеленые растения или других животных. В пищеварительном тракте поглощенные белки расщепляются до аминокислот, последние всасываются, и уже из них строятся белки, характерные для данного организма. Ни один поглощенный белок не включается в структуры тела как таковой. Единственное исключение заключается в том, что у многих млекопитающих часть материнских антител может в интактном виде попасть через плаценту в кровоток плода, а через материнское молоко (особенно у жвачных) быть передано новорожденному сразу же после его появления на свет.
Потребность в белках. Ясно, что для поддержания жизни организм должен получать с пищей некоторое количество белков. Однако размеры этой потребности зависят от ряда факторов. Организму необходима пища и как источник энергии (калорий), и как материал для построения его структур. На первом месте стоит потребность в энергии. Это значит, что, когда углеводов и жиров в рационе мало, пищевые белки используются не для синтеза собственных белков, а в качестве источника калорий. При длительном голодании даже собственные белки расходуются на удовлетворение энергетических нужд. Если же углеводов в рационе достаточно, то потребление белков может быть снижено.
Азотистый баланс. В среднем ок. 16% всей массы белка составляет азот. Когда входившие в состав белков аминокислоты расщепляются, содержавшийся в них азот выводится из организма с мочой и (в меньшей мере) с калом в виде различных азотистых соединений. Удобно поэтому для оценки качества белкового питания использовать такой показатель, как азотистый баланс, т.е. разность (в граммах) между количеством азота, поступившего в организм, и количеством выведенного азота за сутки. При нормальном питании у взрослого эти количества равны. У растущего организма количество выведенного азота меньше количества поступившего, т.е. баланс положителен. При нехватке белков в рационе баланс отрицателен. Если калорий в рационе достаточно, но белки в нем полностью отсутствуют, организм сберегает белки. Белковый обмен при этом замедляется, и повторная утилизация аминокислот в синтезе белка идет с максимально возможной эффективностью. Однако потери неизбежны, и азотистые соединения все же выводятся с мочой и частично с калом. Количество азота, выведенного из организма за сутки при белковом голодании, может служить мерой суточной нехватки белка. Естественно предположить, что, введя в рацион количество белка, эквивалентное этому дефициту, можно восстановить азотистый баланс. Однако это не так. Получив такое количество белка, организм начинает использовать аминокислоты менее эффективно, так что для восстановления азотистого баланса требуется некоторое дополнительное количество белка. Если количество белка в рационе превышает необходимое для поддержания азотистого баланса, то вреда от этого, по-видимому, нет. Избыток аминокислот просто используется как источник энергии. В качестве особенно яркого примера можно сослаться на эскимосов, которые потребляют мало углеводов и примерно в десять раз больше белка, чем требуется для поддержания азотистого баланса. В большинстве случаев, однако, использование белка в качестве источника энергии невыгодно, поскольку из определенного количества углеводов можно получить намного больше калорий, чем из такого же количества белка. В бедных странах население получает необходимые калории за счет углеводов и потребляет минимальное количество белка. Если необходимое число калорий организм получает в форме небелковых продуктов, то минимальное количество белка, обеспечивающее поддержание азотистого баланса, составляет для взрослого человека ок. 30 г в день. Примерно столько белка содержится в четырех ломтиках хлеба или 0,5 л молока. Оптимальным считают обычно несколько большее количество; рекомендуется от 50 до 70 г.
Незаменимые аминокислоты. До сих пор белок рассматривался как нечто целое. Между тем для того, чтобы мог идти синтез белка, в организме должны присутствовать все необходимые аминокислоты. Некоторые из аминокислот организм животного сам способен синтезировать. Их называют заменимыми, поскольку они не обязательно должны присутствовать в рационе, — важно лишь, чтобы в целом поступление белка как источника азота было достаточным; тогда при нехватке заменимых аминокислот организм может синтезировать их за счет тех, что присутствуют в избытке. Остальные, «незаменимые», аминокислоты не могут быть синтезированы и должны поступать в организм с пищей. Для человека незаменимыми являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, гистидин, лизин и аргинин. (Хотя аргинин и может синтезироваться в организме, его относят к незаменимым аминокислотам, поскольку у новорожденных и растущих детей он образуется в недостаточном количестве. С другой стороны, для человека зрелого возраста поступление некоторых из этих аминокислот с пищей может стать необязательным.) Этот список незаменимых аминокислот приблизительно одинаков также и у других позвоночных и даже у насекомых. Питательную ценность белков обычно определяют, скармливая их растущим крысам и следя за прибавкой веса животных.
Питательная ценность белков. Питательную ценность белка определяют по той незаменимой аминокислоте, которой более всего не хватает. Проиллюстрируем это на примере. В белках нашего тела содержится в среднем ок. 2% триптофана (по весу). Допустим, что в рацион входит 10 г белка, содержащего 1% триптофана, и что других незаменимых аминокислот в нем достаточно. В нашем случае 10 г этого неполноценного белка по сути эквивалентны 5 г полноценного; остальные 5 г могут послужить только источником энергии. Отметим, что, поскольку аминокислоты в организме практически не запасаются, а для того чтобы мог идти синтез белка, должны одновременно присутствовать все аминокислоты, эффект от поступления незаменимых аминокислот можно обнаружить лишь в том случае, если все они поступят в организм одновременно. Усредненный состав большей части животных белков близок к усредненному составу белков человеческого тела, так что аминокислотная недостаточность нам вряд ли грозит, если наш рацион богат такими продуктами, как мясо, яйца, молоко и сыр. Однако есть белки, например желатин (продукт денатурации коллагена), которые содержат очень мало незаменимых аминокислот. Растительные белки, хотя они в этом смысле и лучше желатина, тоже бедны незаменимыми аминокислотами; особенно мало в них лизина и триптофана. Тем не менее и чисто вегетарианскую диету вовсе нельзя считать вредной, если только при этом потребляется несколько большее количество растительных белков, достаточное для того, чтобы обеспечить организм незаменимыми аминокислотами. Больше всего белка содержится у растений в семенах, особенно в семенах пшеницы и различных бобовых культур. Богаты белком также и молодые побеги, например у спаржи.
Синтетические белки в рационе. Добавляя небольшие количества синтетических незаменимых аминокислот или богатых ими белков к неполноценным белкам, например к белкам кукурузы, можно значительно повысить питательную ценность последних, т.е. тем самым как бы увеличить количество потребляемого белка. Другая возможность состоит в выращивании бактерий или дрожжей на углеводородах нефти с добавлением нитратов или аммиака в качестве источника азота. Полученный таким путем микробный белок может служить кормом для домашней птицы или скота, а может и непосредственно потребляться человеком. Третий, широко применяющийся, метод использует особенности физиологии жвачных животных. У жвачных в начальном отделе желудка, т.н. рубце, обитают особые формы бактерий и простейших, которые превращают неполноценные растительные белки в более полноценные микробные белки, а эти, в свою очередь, — после переваривания и всасывания — превращаются в животные белки. К корму скота можно добавить мочевину — дешевое синтетическое азотсодержащее соединение. Обитающие в рубце микроорганизмы используют азот мочевины для превращения углеводов (которых в корме значительно больше) в белок. Около трети всего азота в корме скота может поступать в виде мочевины, что по сути и означает в определенной мере химический синтез белка. В США этот метод играет важную роль как один из способов получения белка.
ЛИТЕРАТУРА
Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека, тт. 1-2. М., 1993 Албертс Б., Брей Д., Льюс Дж. и др. Молекулярная биология клетки, тт. 1-3. М., 1994

Энциклопедия Кольера. — Открытое общество.
2000.

dic.academic.ru

БЕЛОК — это… Что такое БЕЛОК?

  • Белок А — (англ. protein A) это белок, молекулярной массой 40 60 кДа, выделенный с поверхности клеточной стенки золотистого стафилококка (Staphylococcus aureus). Белок А используется в биохимических исследованиях, так как хорошо связывает многие… …   Википедия

  • Белок G — (англ. protein G)  это белок, связывающий иммуноглобулины, который экспрессируются в стрептококках групп C и G. Белок G имеет сходства с белком А, но отличается специфичностью. Белок G имеет молекулярную массу 58 кДа (в случае белка… …   Википедия

  • белок — вытаращить арабские белки.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. белок глобулин, гистон, протеиноид, протеин, протеиновое тело, протамин, протеид Словарь русских синонимов …   Словарь синонимов

  • БЕЛОК — 1. БЕЛОК1, белка, муж. (биол. хим.). Важнейшая составная часть организма животных и растений; то же, что альбумин и белковина. 2. БЕЛОК2, белка, муж. 1. Выпуклая непрозрачная оболочка глаза. || только мн. Глаза (прост.). Белки выпучить. Белками… …   Толковый словарь Ушакова

  • БЕЛОК — 1. БЕЛОК1, белка, муж. (биол. хим.). Важнейшая составная часть организма животных и растений; то же, что альбумин и белковина. 2. БЕЛОК2, белка, муж. 1. Выпуклая непрозрачная оболочка глаза. || только мн. Глаза (прост.). Белки выпучить. Белками… …   Толковый словарь Ушакова

  • белок C — Белок, сериновая протеаза, синтезируемая клетками печени; антикоагулянт, является ингибитором факторов Va и VIIIa свертывания крови; частота гетерозигот по дефициту Б.C в популяциях человека достигает 1/200 данная аномалия связана с повышенным… …   Справочник технического переводчика

  • БЕЛОК — БЕЛОК, органическое СОЕДИНЕНИЕ, содержащее множество АМИНОКИСЛОТ, соединенных ковалентными пептидными связями. Молекулы белков состоят из по липептидных цепей. В живых КЛЕТКАХ имеется около 20 различных аминокислот. Из за того, что в каждой… …   Научно-технический энциклопедический словарь

  • белок — БЕЛОК, лка, муж. Высокомолекулярное органическое вещество, обеспечивающее жизнедеятельность животных и растительных организмов. | прил. белковый, ая, ое. Белковые корма (с высоким содержанием белка). II. БЕЛОК, лка, муж. 1. Прозрачная часть яйца …   Толковый словарь Ожегова

  • Белок — Белок, связывающий жирные кислоты Белки, связывающие жирные кислоты (англ. fatty acid binding proteins, FABP; БСЖК)  семейство транспортеров жирных кислот и других липофильных веществ, таких как эйкозаноиды и ретиноиды. Как считается, эти… …   Википедия

  • белок — 1. БЕЛОК, лка; м. 1. Прозрачная жидкость, окружающая желток птичьего яйца. / О такой части куриного яйца как пище. Выпить сырой б. Взбитые белки. ◁ Белковый, ая, ое. Б. крем (из яичных белков). 2. БЕЛОК см. 1. Белки. 3. БЕЛОК см. 2. Белки. 4.… …   Энциклопедический словарь

  • dic.academic.ru

    определение, состав, строение, структура, функции, классификация и характеристика. Чем отличаются простые белки от сложных?

    Сложный белок, кроме собственно белкового компонента, содержит дополнительную группу иной природы (простетическую). В качестве данного компонента выступают углеводы, липиды, металлы, остатки фосфорной кислоты, нуклеиновые кислоты. Чем отличаются простые белки от сложных, на какие виды подразделяют эти вещества, и каковы их особенности, расскажет эта статья. Главное отличие рассматриваемых веществ – их состав.

    Сложные белки: определение

    Это двухкомпонентные вещества, в состав которых входит простой белок (пептидные цепи) и небелковое вещество (простетическая группа). В процессе их гидролиза образуются аминокислоты, небелковая часть и продукты распада. Чем отличаются простые белки от сложных? Первые состоят только из аминокислот.

    сложный белок

    Классификация и характеристика сложных белков

    Эти вещества делятся на виды в зависимости от типа дополнительной группы. К сложным белкам относятся:

    • Гликопротеины – белки, молекулы которых содержат углеводный остаток. Среди них выделяют протеогликаны (компоненты межклеточного пространства), включающие в свою структуру мукополисахариды. К гликопротеидам относятся иммуноглобулины.
    • Липопротеиды включают липидный компонент. К ним относятся аполипопротеины, выполняющие функцию обеспечения липидного транспорта.
    • Металлопротеины содержат ионы металлов (меди, марганца, железа и др.), связанные через донорно-акцепторное взаимодействие. В эту группу не входят гемовые белки, включающие соединения профиринового кольца с железом и подобные им по структуре соединения (хлорофилл, в частности).
    • Нуклеопротеиды – белки, имеющие нековалентные связи с нуклеиновыми кислотами (ДНК, РНК). К ним относится хроматин – компонент хромосом.
    • 5. Фосфопротеиды, к которым относится казеин (сложный белок творога), включают ковалентно соединенные остатки фосфорной кислоты.
    • Хромопротеины объединяет окрашенность простетического компонента. Данный класс включает гемовые белки, хлорофиллы и флавопротеиды.

    Особенности гликопротеинов и протеогликанов

    Эти белки являются сложными веществами. Протеогликаны содержат большую долю углеводов (80-85%), у обычных гликопротеидов содержание составляет 15-20%. Уроновые кислоты присутствуют только в молекуле протеогликанов, их углеводы отличаются регулярным строением с повторяющимися звеньями. Какова структура и функции сложных белков гликопротеинов? Их углеводные цепи включают только 15 звеньев и имеют нерегулярное строение. В структуре гликопротеинов связь углевода с белковым компонентом обычно осуществляется через остатки таких аминокислот, как серин или аспаргин.

     чем отличаются простые белки от сложных

    Функции гликопротеинов:

    • Входят в состав клеточной стенки бактерий, костной соединительной и хрящевой ткани, окружают волокна коллагена, эластина.
    • Играют защитную роль. Например, данную структуру имеют антитела, интерфероны, факторы свертываемости крови (протромбин, фибриноген).
    • Являются рецепторами, которые взаимодействуют с эффектором – небольшой небелковой молекулой. Последняя, присоединяясь к белку, приводит к изменению его конформации, что приводит к определенному внутриклеточному ответу.
    • Выполняют гормональную функцию. К гликопротеинам относится гонадотропный, адренокортикотропный и тиреотропный гормоны.
    • Транспортируют вещества в крови и ионы через клеточную мембрану (трансферрин, транскортин, альбумин, Na+ ,К+ -АТФаза).

    К гликопротеиновым ферментам относятся холинэстераза и нуклеаза.

    Подробнее о протеогликанах

    Обычно сложный белок протеогликан включает в свою структуру большие углеводные цепи с повторяющимися дисахаридными остатками, состоящими из какой-либо уроновой кислоты и аминосахара. Олиго- или полисахаридные цепи называются гликанами. Первые обычно содержат 2-10 мономерных единиц.

    белки являются сложными

    В зависимости от структуры углеводных цепей выделяют их различные типы, например, кислые гетерополисахариды с большим количеством кислотных групп или гликозаминогликаны, включающие аминогруппы. К последним относятся:

    • Гиалуроновая кислота, которую активно применяют в косметологии.
    • Гепарин, препятствующий свертываемости крови.
    • Кератансульфаты – компоненты хрящевой ткани и роговицы.
    • Хондроитинсульфаты входят в состав хряща и синовиальной жидкости.

    Данные полимеры – компоненты протеогликанов, которые заполняют межклеточное пространство, удерживают воду, смазывают подвижные части суставов, являются их структурными составляющими. Гидрофильность (хорошая растворимость в воде) протеогликанов позволяет им в межклеточном пространстве создавать преграду для крупных молекул и микроорганизмов. С их помощью создается желеобразный матрикс, в который погружены волокна других важных белков, например, коллагена. Его тяжи в среде протеогликана имеют древовидную форму.

    Особенности и типы липопротеидов

    Сложный белок липопротеид отличается хорошо выраженной двойственной гидрофильной и гидрофобной природой. Ядро молекулы (гидрофобную часть) образуют неполярные эфиры холестерола и триацилглицериды.

    Снаружи в гидрофильной зоне располагаются белковая часть, фосфолипиды, холестерол. Выделяют несколько разновидностей белков липопротеидов в зависимости от их структуры.

    Основные классы липопротеидов:

    • Сложный белок высокой плотности (ЛВП, α-липопротеины). Перемещает холестерин к печени и периферическим тканям.
    • Низкой плотности (ЛНП, β-липопротеины). Кроме холестерина транспортируют триацилглицериды и фосфолипиды.
    • Очень низкой плотности (ЛОНП, пре-β-липопротеины). Выполняют функцию, подобную ЛНП.
    • Хиломикроны (ХМ). Транспортируют жирные кислоты и холестерин из кишечника после поступления пищи.

    к сложным белкам относятся

    Такая сосудистая патология, как атеросклероз, возникает в результате неправильного соотношения разных типов липопротеинов в крови. По характеристике состава можно выявить несколько тенденций изменения структуры фосфолипидов (от ЛВП до хиломикронов): уменьшение доли белка (от 80 до 10%) и фосфолипидов, увеличение процента триацилглицеридов (от 20 до 90%).

    Среди металлопротеинов много важных ферментов

    Металлопротеин может включать в себя ионы нескольких металлов. Их наличие влияет на ориентацию субстрата в активном (каталитическом) центре фермента. Ионы металлов локализуются в активном центре и играют важную роль в проведении каталитической реакции. Часто ион выполняет функцию акцептора электронов.

    Примеры металлов, содержащихся в структуре ферментных металлопротеинов:

    • Медь включена в состав цитохромоксидазы, которая наряду с гемом содержит ион данного металла. Фермент участвует в процессе образования АТФ при работе дыхательной цепи.
    • Железо содержат такие ферменты, как ферритин, выполняющий функцию депонирования железа в клетке; трансферрин – переносчик железа в крови; каталаза ответственна за реакцию обезвреживания перекиси водорода.
    • Цинк – металл, характерный для алкогольдегидрогеназы, участвующей в окислении этилового и подобных ему спиртов; лактатдегидрогеназа – фермент в метаболизме молочной кислоты; карбоангидраза, катализирующая образование угольной кислоты из CO2 и H2O; щелочная фосфатаза, выполняющая гидролитическое расщепление эфиров фосфорной кислоты с различными соединениями; α2-макроглобулин – антипротеазный кровяной белок.
    • Селен входит в состав тиреопероксидазы, участвующей в процессе образования гормонов щитовидной железы; глутатионпероксидазы, выполняющей антиоксидантную функцию.
    • Кальций характерен для структуры α-амилазы – фермента гидролитического расщепления крахмала.

    Фосфопротеины

    Что входит в состав сложных белков фосфопротеинов? Для данной категории характерно присутствие фосфатной группы, которая связана с белковой частью через аминокислоты с гидроксилом (тирозин, серин или треонин). Какие функции выполняет фосфорная кислота, находясь в структуре белка? Она изменяет структуру молекулы, придает ей заряд, повышает растворимость, влияет на свойства белка. Примерами фосфопротеинов являются казеин молока и яичный альбумин, но в основном к данной категории сложных белков относятся ферменты.

    сложный белок творога

    Фосфатная группа играет важную функциональную роль, так как многие белки связаны с ней не постоянно. В клетке все время происходят процессы фосфорилирования и дефосфорилирования. В результате выполняется регуляция в работе белков. Например, если гистоны – белки, соединенные с нуклеиновыми кислотами переходят в фосфорилированное состояние, то активность генома (генетического материала) возрастает. От фосфорилирования зависит активность таких ферментов, как гликогенсинтаза и гликогенфосфорилаза.

    Нуклеопротеины

    Нуклеопротеины – белки, соединенные с нуклеиновыми кислотами. Они – неотъемлемая часть хранения и регуляции генетического материала, работы рибосом, выполняющих функцию синтеза белка. Самые простейшие формы жизни вирусов можно назвать рибо- и дезоксирибонуклеопротеинами, так как они состоят из генетического материала и белков.

    Как происходит взаимодействие дезоксирибонуклеиновой кислоты (ДНК) и гистонов? В хроматине выделяют 2 вида белков, связанных с ДНК (гистоновые и негистоновые). Первые участвуют на начальной стадии компактизации ДНК. Молекула нуклеиновой кислоты обвивается вокруг протеинов с формированием нуклеосом. Образовавшаяся нить похожа на бусины, из них формируются суперспирализованная структура (хроматиновая фибрилла) и суперспираль (хромонема интерфазы). За счет действия гистоновых белков и протеинов более высоких уровней обеспечивается сокращением размерности ДНК в тысячи раз. Достаточно сравнить размер хромосом и длину нуклеиновой кислоты, чтобы оценить важность белков (6-9 см и 10-6 мкм, соответственно).

    Какие бывают хромопротеины

    Хромопротеины содержат весьма разнообразные группы, которые объединяет только одно – наличие окраски в простетическом компоненте. Сложные белки данной категории подразделяются на: гемопротеины (содержат в структуре гем), ретинальпротеины (витамин А), флавопротеины (витамин В2), кобамидпротеины (витамин В12).

    состав сложных белков

    Гемопротеины классифицируются в зависимости от функций на не ферментативные (гемоглобиновый и миоглобиновый белок) и ферменты (цитохромы, каталазы, пероксидазы).

    Флавопротеины содержат в качестве простетического компонента производные витамина В2 флавинмононуклеотид (ФМН) или флавинадениндинуклеотид (ФАД). Данные ферменты также участвуют в окислительно-восстановительных превращениях. К ним относятся оксидоредуктазы.

    Что такое цитохромы?

    Как было описано выше, гем состоит из порфирина. В его структуру входят 4 пиррольных кольца и двухвалентное железо. Особая группа гемовых ферментов – цитохромы, различающиеся составом аминокислот и числом пептидных цепей, специализированы на проведении окислительно-восстановительных реакций, за счет которых обеспечивается перенос электронов в дыхательной цепи. Данные ферменты участвуют в микросомальном окислении – начальных реакциях биотрансформации ксенобиотиков, приводящих к их обезвреживанию, и обмене многих экзогенных и экзогенных веществ, например, стероидов, насыщенных жирных кислот.

    Влияние простетической группы

    Простетическая группа, входящая в состав сложных белков, влияет на его свойства: изменяет его заряд, растворимость, термопластичность. Например, таким действием обладают остатки фосфорной кислоты или моносахаридов. Углеводная часть, включенная в состав сложного белка, защищает его от протеолиза (разрушения в результате процесса гидролиза), влияет на проникновение молекул через клеточную мембрану, их секрецию и сортировку. Липидный фрагмент позволяет создавать белковые каналы для транспорта плохо растворимых в воде (гидрофобных) соединений.

    сложные белки определение

    Строение и функции сложных белков полностью зависят от простетической группы. Например, с помощью железосодержащего гема в гемоглобине происходит связывание кислорода и углекислого газа. За счет нуклеопротеидов, формируемых в результате взаимодействия гистонов, протаминов с ДНК или РНК, происходит защита генетического материала, его компактное хранение, связывание РНК в процессе синтеза белков. Нуклеопротеидами называют устойчивые комплексы белков и нуклеиновых кислот.

    Заключение

    Таким образом, сложные белки выполняют большой спектр функций в организме. Поэтому потребление макро- и микроэлементов так важно для поддержания здоровья. Металлы входят в состав многих ферментов. Зная биохимию, особенности своего здоровья и экологическое состояние места проживания, можно скорректировать режим собственного питания. Например, выделяют территории, отличающиеся дефицитом какого-либо элемента. Его дополнительное внесение в рацион в виде добавок позволяет восполнить недостаток.

    fb.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *